PI-D Programmable Isolating DC Transmitter.

Features.

[Field Programmable Input and Output Ranges.
 — Bi-Polar Input and Output Ranges.
 - Input to Output Isolation 1.6 kV .
 - High Accuracy 0.1\%.
 [Universal AC/DC Power Supply.
 - Selectable 3second Input Damping.
 [Transmitter Power Supply Standard.
 [Compact DIN Rail Mount Enclosure.
 - Available Standard or Special Calibration.

Ordering Information.
PI-D-X

Standard Programmable Calibration: - Special Programmable Calibration.

PI-D
 \square

	TPU	ANGES	
Voltage	OR	Current	OR
0~500mV	A	0~1mA	1
0~1V	B	0~2mA	2
0~2V	C	0~5mA	3
0~3V	D	0~10mA	4
0~4V	E	0~16mA	5
0~5V	F	0~20mA	6
0~6V	G	1~5mA	7
0~8V	H	2~10mA	8
0~10V	I	4~20mA	9
0~12V	J	$-1 \sim 1 \mathrm{~mA}$	10
1~5V	K	-2~2mA	11
2~10V	L	-5~5mA	12
-1~1V	M	-10~10mA	13
-2~2V	N	-20~20mA	14
-5~5V	O		
-10~10V	P		
-12~12V	Q		
Special Output Range			Z

Ranges with '*' beside them must have the polarity of their connections reversed.

POWER SUPPLY	PS
High Voltage Power Supply: $85 \sim 264 \mathrm{Vac} / \mathrm{dc}$	H
Mid Voltage Power Supply: $22 \sim 85 \mathrm{Vac} / \mathrm{dc}$	M
Low Voltage Power Supply: $10 \sim 28 \mathrm{Vac} / \mathrm{dc}$	L

Note: Power supply H is field selectable for M, and M for H. Power supply L must be ordered separately.

Ordering Examples.

1/ PI-D-K-1-L 0~10V Input; 0~1mA Output; Low Voltage Power Supply.
2/ PI-D-Z-P-H-0/8V 0~8V Input; -10~10V Output; High Voltage Power Supply.

Quality Assurance Programme.

The modern technology and strict procedures of the ISO9001 Quality Assurance Programme applied during design, development, production and final inspection grant long term reliability of the instrument.

PI-D Rev2 Specifications.
Input
-Voltage

Current
-Transmitter P/S

Output	-Voltage
	- Current
	$-H$
Power	-M
	- L
	- Circuit Sensitivity

Accurate to
Linearity \& Repeatability
Ambient Drift
Noise Immunity
EMC Compliances
Safety Compliance
Mains Isolation
Isolation Test Voltages
Response Time
Operating Temperature \& Humidity
Dimensions and Mounting

Field Programmable From 10 mV to 150 Vdc and Bipolar.
Minimum Input Resistance $=200 \mathrm{k} \Omega$.
Maximum Over-range $=170 \mathrm{Vdc}$ Continuous
Field Programmable From $200 \mu \mathrm{~A}$ to 100 mAdc and Bipolar.
Input Resistance $=25 \Omega$.
Maximum Over-range $=120 \mathrm{mAdc}$ Continuous.
$20 \mathrm{Vdc} \pm 5 \%$ Common to Input Com. (Terminal 4.)
Max Load = 30mA.
Ripple $<20 \mathrm{mV}$ Typical at 30 mA Load.
Field Programmable From 500 mV to $\pm 12 \mathrm{Vdc}$.
Maximum Output Drive $=10 \mathrm{~mA}$.
Field Programmable From 1 mA to $\pm 20 \mathrm{mAdc}$.
Maximum Output Drive $=10 \mathrm{Vdc}$. (500Ω @ 20mA.)
85~264Vac/dc; 50/60Hz; 5VA.
$22 \sim 85 \mathrm{Vac} / \mathrm{dc} ; 50 / 60 \mathrm{~Hz}$; 5VA. 32Vac Min. When Using 20V TX. P/S.
10~28Vac/dc; 50/60Hz; 5VA.
$< \pm 0.001 \% / V$ FSO Typical.
$< \pm 0.1 \%$ FSO Typical.
$< \pm 0.1 \%$ FSO Typical.
$< \pm 0.01 \% / C$ FSO Typical.
125dB CMRR Average. (1600Vdc Limit.)
Emissions EN 55022-A. Immunity EN 50082-1, <1\% Effect FSO Typical.
EN 60950
250 Vac .
Mains to Input/Output 3 kVac 50 Hz for 1 min ; Input to Output 1.6kVdc for 1 min .
200 msec Typical. (From 10 to $90 \% 50 \mathrm{msec}$ Typical.)
0~60C. (Storage Temperature -20~80C.) 5~85\%RH max. Non-Condensing.
$\mathrm{L}=80, \mathrm{~W}=50, \mathrm{H}=120 \mathrm{~mm}$. Mounts on 35 mm Symetrical Mounting Rail.

Product Liability. This information describes our products. It does not constitute guaranteed properties and is not intended to affirm the suitability of a product for a particular application. Due to ongoing research and development, designs, specifications, and documentation are subject to change without notification. Regrettably, omissions and exceptions cannot be completely ruled out. No liability will be accepted for errors, omissions or amendments to this specification. Technical data are always specified by their average values and are based on Standard Calibration Units at 25C, unless otherwise specified. Each product is subject to the 'Conditions of Sale'.
Warning: These products are not designed for use in, and should not be used for patient connected applications. In any critical installation an independant fail-safe back-up system must always be implemented.

Examples of Input Connection.

1600 V / I Isolation

Plan View of PI-D Adjustments.
OUTPUT PROGRAMMING

PI-D Dimensions and Mounting.

PI-D Input Programming.

Always set OUTPUT range first, then INPUT range. If the input range is not listed in the programming table, use the following formulae to work out the Zero and Span DIP switch settings for gain.

Span Gain =
$\frac{24}{\text { Pregain } \times \text { (Signal High - Signal Low) }}$
Zero Gain $=10 \times$ Pregain \times Signal Low.
If Zero is $\quad 1 /$ Positive, put S5-4 OFF.
2/ Negative, put S5-4 ON.

Gain Value	1	2	4	8	16	32
DIP Switch No.	1	2	3	4	5	6

	EFFECTIVE INPUT RANGE (ie Signal High - Signal Low)	S5-1	S5-2	S5-3	PREGAIN
	10 mV <= Range <= 20 mV	0	0	0	200
	20 mV < Range <= 200 mV	0	0	1	20
	200 mV < Range <= 2V	0	1	1	2
	2 V < Range <= 20 V	1	0	1	0.2
	20 V < Range <= 150V	1	1	1	0.02
	$200 \mu \mathrm{~A}<=$ Range $<=800 \mu \mathrm{~A}$	1	0	0	5000
	$800 \mu \mathrm{~A}$ < Range $<=8 \mathrm{~mA}$	1	0	1	500
	8 mA < Range < $=50 \mathrm{~mA}$	1	1	1	50

So if a gain value of 28 is required, put DIP switch No's 3, 4, 5 (ie, gains of $4+8+16=28$) OFF and all the other DIP switches ON. DIP switches and Pots are accessed by removing the small rectangular lid on the top of the PI-D enclosure.

Notes: (a) Enter ranges with their exponential value: Eg. Enter 20 mA as 20×10^{-3}; Enter 100 mV as 100×10^{-3}.
(b) Use the same pregain value in both the Span and Zero gain formulae.
(c) Enter the Zero or Span gain value into the appropriate Zero or Span DIP switch.
(d) If your GAIN ZERO exceeds 63, then your input range will need to be factory calibrated.

PI-D Input Range Programming Table.

Notes:
1/ Switch status $1=\mathrm{ON}, 0=\mathrm{OFF}, \mathrm{X}=\mathrm{DON'T}$ CARE.
2/ Input ranges with '*' beside them reverse the polarity of the input connections.
3/ Input ranges with '\#' beside them require more adjustment with the Zero and Span trimpots.

Input Range	S3-SPAN						S4-ZERO						S5-FUNCTION			
	1	2	3	4	5	6	1	2	3	4	5	6	1	2	3	4
0~10mV	1	1	0	0	1	1	1	1	1	1	1	1	0	0	0	x
0~20mV	1	0	0	1	1	1	1	1	1	1	1	1	0	0	0	x
0~50mV	1	1	1	0	0	1	1	1	1	1	1	1	0	0	1	X
0~100mV	1	1	0	0	1	1	1	1	1	1	1	1	0	0	1	X
0~200mV	1	0	0	1	1	1	1	1	1	1	1	1	0	0	1	x
0~500mV	1	1	1	0	0	1	1	1	1	1	1	1	0	1	1	X
0~1V	1	1	0	0	1	1	1	1	1	1	1	1	0	1	1	X
0~2V	1	0	0	1	1	1	1	1	1	1	1	1	0	1	1	x
0~4V	1	0	0	0	0	1	1	1	1	1	1	1	1	0	1	x
0~5V	1	1	1	0	0	1	1	1	1	1	1	1	1	0	1	X
0~10V	1	1	0	0	1	1	1	1	1	1	1	1	1	0	1	X
0~20V	1	0	0	1	1	1	1	1	1	1	1	1	1	0	1	X
0~50V	1	1	1	0	0	1	1	1	1	1	1	1	1	1	1	X
0~100V	1	1	0	0	1	1	1	1	1	1	1	1	1	1	1	X
0~150V	1	1	1	0	1	1	1	1	1	1	1	1	1	1	1	x
1~5V	1	0	0	0	0	1	1	0	1	1	1	1	1	0	1	0
2~10V	0	0	0	0	1	1	1	1	0	1	1	1	1	0	1	0
-1~1V	1	0	0	1	1	1	1	1	0	1	0	1	0	1	1	1
-5~5V	1	1	0	0	1	1	1	0	1	0	1	1	1	0	1	1
-10~10V	1	0	0	1	1	1	1	1	0	1	0	1	1	0	1	1
0~200 ${ }^{\text {A }}$	1	1	1	0	0	1	1	1	1	1	1	1	1	0	0	X
0~500 ${ }^{\text {A }}$	1	0	1	0	1	1	1	1	1	1	1	1	1	0	0	X
0~1mA	1	1	1	1	0	0	1	1	1	1	1	1	1	0	1	x
0~2mA	1	1	1	0	0	1	1	1	1	1	1	1	1	0	1	X
0~5mA\#	1	0	1	0	1	1	1	1	1	1	1	1	1	0	1	x
0~10mA	1	1	1	1	0	0	1	1	1	1	1	1	1	1	1	X
0~20mA	1	1	1	0	0	1	1	1	1	1	1	1	1	1	1	X
0~40mA	1	1	0	0	1	1	1	1	1	1	1	1	1	1	1	x
0~50mA\#	1	0	1	0	1	1	1	1	1	1	1	1	1	1	1	x
1~5mA	1	1	0	0	1	1	0	1	0	1	1	1	1	0	1	0
2~10mA	1	0	0	1	1	1	1	0	1	0	1	1	1	0	1	0
4~20mA	1	0	0	0	0	1	1	0	1	1	1	1	1	1	1	0
10~50mA	1	1	0	0	1	1	0	1	0	1	1	1	1	1	1	0
-1~1mA	1	1	1	0	0	1	0	1	0	1	1	1	1	0	1	1
-10~10mA	1	1	1	0	0	1	0	1	0	1	1	1	1	1	1	1
-20~20mA	1	1	0	0	1	1	1	0	1	0	1	1	1	1	1	1
* 20~4mA	1	0	0	0	0	1	1	0	1	0	1	1	1	1	1	1
* 50~10mA	1	1	0	0	1	1	0	1	1	0	0	1	1	1	1	1

PI-D H1 Power Supply Jumper Settings.

WARNING: High Voltages Maybe Present.
Only adjust jumper with power disconnected.

Power Supply Jumper Settings	
H1	Power Supply Voltage Range
H	Link for High: $85 \sim 264 \mathrm{Vac} / \mathrm{dc}$
M	Link for Mid: $22 \sim 85 \mathrm{Vac} / \mathrm{dc}$

Notes:
1/ H1 is approx 4cm ($11 / 2$ ") behind the ' S ' trimpot.
2/ Exceeding voltage ranges may damage the unit.
3/ Ensure the enclosure label is correctly labelled for the jumper position.
4/ Adjust H1 jumper with a pair of needle nose pliers.
5/ Low Voltage Power Supply version is fixed, and has no jumper. This must be ordered separately.

PI-D Output Range Programming Table.

Notes: $\quad 1 / \quad$ Switch status $1=O N \quad 0=$ OFF
2/ Output ranges with '*' beside them reverse the polarity of the output connections.

Output Range (V)	S1-SPAN						S2-Function				Output Range (I)	S1-SPAN						S2-Function			
	1	2	3	4	5	6	1	2	3	4		1	2	3	4	5	6	1	2	3	4
0~500mV	0	1	1	1	1	1	0	0	1	1	0~1mA	0	1	1	1	1	1	0	0	0	0
0~1V	1	0	1	1	1	1	0	0	1	1	0~2mA	1	0	1	1	1	1	0	0	0	0
0~2V	1	1	0	1	1	,	0	0	1	1	0~5mA	0	1	0	1	1	1	0	0	0	0
0~3V	1	0	0	1	1	1	0	0	1	1	0~10mA	1	0	1	0	1	1	0	0	0	0
0~4V	1	1	1	0	1	1	0	0	1	1	0~16mA	1	1	1	1	0	1	0	0	0	0
0~5V	1	0	1	0	1	1	0	0	1	1	0~20mA	1	1	0	1	0	1	0	0	0	0
0~6V	1	1	0	0	1	1	0	0	1	1	1~5mA	1	1	0	1	1	1	1	0	0	0
0~8V	1	1	1	1	0	1	0	0	1	1	2~10mA	1	1	1	0	1	1	1	0	0	0
0~10V	1	1	0	1	0	1	0	0	1	1	4~20mA	1	1	1	1	0	1	1	0	0	0
0~12V	1	1	1	0	0	1	0	0	1	1	-1~1mA	1	0	1	1	1	1	0	1	0	0
1~5V	1	1	1	0	1	1	1	0	1	1	-2~2mA	1	1	0	1	1	1	0	1	0	0
2~10V	1	1	1	1	0	1	1	0	1	1	-5~5mA	1	0	1	0	1	1	0	1	0	0
-1~1V	1	1	0	1	1	1	0	1	1	1	-10~10mA	1	1	0	1	0	1	0	1	0	0
-2~2V	1	1	1	0	1	1	0	1	1	1	-20~20mA	1	1	1	0	1	0	0	1	0	0
-5~5V	1	1	0	1	0	1	0	1	1	1	0~-10mA *	1	0	1	0	1	1	0	0	0	0
-10~10V	1	1	1	0	1	0	0	1	1	1	0~-20mA *	1	1	0	1	0	1	0	0	0	0
-12~12V	1	1	1	1	0	0	0	1	1	1											
0~-5V *	1	0	1	0	1	1	0	0	1	1											
0~-10V *	1	1	0	1	0	1	0	0	1	1											

The Proper Installation \& Maintenance of PI-D.
Note. All power and signals must be de-energised before connecting any wiring, altering any jumpers or DIP switches, or inserting or removing the PI unit from it's base.

MOUNTING

(1) Mount in a clean environment in an electrical cabinet on 35 mm , symetrical, mounting rail.
(2) Draft holes must have minimum free air space of 20 mm . Foreign matter must not enter or block draft holes.
(3) Do not subject to vibration or excess temperature or humidity variations.
(4) Avoid mounting in cabinets with power control equipment.
(5) To maintain compliance with the EMC Directives the PI-D is to be mounted in a fully enclosed steel cabinet. The cabinet must be properly earthed, with appropriate input / output entry points, filtering and cabling.

WIRING.

(1) A readily accessible disconnect device and a $1 \mathrm{~A}, 250 \mathrm{Vac}$ overcurrent device, must be in the power supply wiring.
(2) All cables should be good quality overall screened INSTRUMENTATION CABLE with the screen earthed at one end only.
(3) Signal cables should be laid a minimum distance of 300 mm from any power cables.
(4) For 2 wire current loops, 2 wire voltage signals or 2 wire current signals, Austral Standard Cables B5102ES is recommended. For 3 wire transmitters Austral Standard Cables B5103ES is recommended.
(5) It is recommended that you do not ground current loops and use power supplies with ungrounded outputs.
(6) Lightning arrestors should be used when there is a danger from this source.
(7) Refer to diagrams for connection information.

COMMISSIONING.

(1) Once all the above conditions have been carried out and the wiring checked apply power to the PI-D loop and allow five minutes for it to stabilize.
(2) Take a low (approx 10\%) and high (approx 90%) reading of the variable being measured by the transducer supplying the signal to the PI-D, and ensure that this agrees with the level being indicated by the PLC or indicator, etc, that the PI-D is connected into. Adjust for any difference using the Zero and Span Pots in the top of the PI-D enclosure with a small screw driver until the two levels agree. (Clockwise to increase the output reading and anti-clockwise to decrease the output reading.)
MAINTENANCE.
(1) Repeat (2) of Commissioning.
(2) Do it regularly - at least once every 12 months.

