# JUMO IMAGO 500 <br> Multi-channel Process and Program Controller 

## ${ }^{6}$



## Operating Manual

Please read these Operating Manual before starting up the instrument. Keep these operating manual in a place which is accessible to all users at all times.

These operating manual are valid from software version 162.03.05.

Please assist us to improve these operating manual, where necessary.
Your suggestions will be welcome.
All necessary settings are described in these operating manual. If any difficulties should still arise during start-up, you are asked not to carry out any unauthorized manipulations on the unit. You could endanger your rights under the instrument warranty!
Please contact the nearest subsidiary or the head office in such a case.

The regulations of EN 61340-5-1 and EN 61340-5-2 "Protection of electronic devices from electrostatic phenomena" must be observed when returning modules, assemblies or components. Use only the appropriate ESD packaging for transport.

Please note that we cannot accept any liability for damage caused by ESD (electrostatic discharge).

## Contents

1 Introduction ..... 5
1.1 Description ..... 5
1.2 Typographical conventions ..... 6
2 Identifying the instrument version ..... 7
2.1 Type designation ..... 7
2.2 Accessories ..... 8
2.3 Nameplate ..... 9
3 Mounting ..... 11
3.1 Location and climatic conditions ..... 11
3.2 Dimensions ..... 11
3.3 Fitting ..... 12
3.4 Cleaning the front panel ..... 12
4 Electrical connection ..... 13
4.1 Installation notes ..... 13
4.2 Electrical isolation ..... 14
4.3 Connection diagram ..... 15
5 Operation ..... 17
5.1 Operation: General ..... 17
5.1.1 Displays and controls ..... 17
5.1.2 Overview of operation ..... 19
5.1.3 Entering values and selecting settings ..... 22
5.1.4 Setpoint input ..... 23
5.1.5 Recording ..... 24
5.2 Operation: Controller ..... 25
5.2.1 Altering the setpoint ..... 25
5.2.2 Manual mode ..... 26
5.3 Operation: Program controller/generator ..... 26
5.3.1 Program editor ..... 27
5.3.2 Starting the program ..... 30
5.3.3 Overview of operation ..... 32
5.3.4 Shifting the program profile ..... 34

## Contents

6 Parameterization ..... 35
7 Configuration ..... 37
7.1 Analog inputs ..... 41
7.2 Controller ..... 46
7.3 Generator ..... 49
7.4 Limit comparators ..... 53
7.5 Outputs ..... 56
7.6 Logic functions ..... 58
7.7 Math and logic module ..... 63
7.8 C-level control ..... 65
7.8.1 C-level control example ..... 66
7.9 Display ..... 67
7.10 Interfaces ..... 70
7.11 Device data ..... 71
7.12 Recording ..... 72
7.13 Timers ..... 73
8 Optimization ..... 75
8.1 Self-optimization ..... 75
8.2 Check of the optimization ..... 78
9 Retrofitting of modules ..... 79
10 Appendix ..... 83
10.1 Technical data ..... 83
11 Index ..... 87

## 1 Introduction

### 1.1 Description

Type 703590 is a process and program controller with up to eight controller channels or four program channels. The instrument is built to the format $144 \mathrm{~mm} \times 130 \mathrm{~mm}$ for a standard $92 \mathrm{~mm} \times 92 \mathrm{~mm}$ panel cut-out and a mounting depth of 170 mm .
The display is a $5^{\prime \prime}$ color screen with 27 colors. The layout of the screen templates can be individually adapted and adjusted. Two freely configurable screen templates make it possible to customize the placing of texts, process values, background pictures and icons.
A maximum of eight analog inputs and 6 logic inputs are available, as well as six expansion slots for switched or analog outputs. Four of these slots can be used alternatively for analog inputs or outputs.
A setup program is available for comfortable configuration from a PC. Linearizations for the usual transmitter outputs are stored within the instrument, four customer-specific linearization tables can be programmed.
A math and logic module can be used to adapt the instrument to a very wide range of control tasks.
A serial interface RS422/485 or PROFIBUS-DP can be used to integrate the instrument into a data network.
Modules can be retrofitted quite simply by the user.
The electrical connection is made at the back, via plug-in screw terminals.


## 1 Introduction

### 1.2 Typographical conventions

## Warning signs



Danger


Caution This symbol is used when there may be damage to equipment or data if the instructions are ignored or not followed correctly!


Caution This symbol is used where special care is required when handling components liable to damage through electrostatic discharge.

Note
signs
signs

## Note

This symbol is used when your special attention is drawn to a remark.


Reference This symbol refers to further information in other operating manuals, chapters or sections.

H Action This symbol indicates that an action to be performed is described.

The individual steps are marked by this asterisk, e.g.

* Press $\qquad$ Enter


## Representation

Menu items Texts relating to screen representations are shown in italics, e.g. Edit program

## 2 Identifying the instrument version

### 2.1 Type designation



[^0]a The board for the $0 / 22 \mathrm{~V}$ logic output and the supply for a 2-wire transmitter are identical, and are detected by the instrument and the setup program as "Logic output 0/22 V".
b List extra codes in sequence, separated by commas.

## 2 Identifying the instrument version

### 2.2 Accessories

## External relay module

One of the RS422/485 interfaces is required to operate one or two external relay modules (external relay or logic outputs).
Versions:
Voltage supply AC 110 to 240 V
Relay version: Part no. 00405292
Logic version: Part no. 00439131
Voltage supply AC/DC 20 to 53 V


Relay version: Part no. 00405297
Logic version: Part no. 00471459

PC interface for setup program
(TTL/RS232 converter)
Part no. 00301315
PC interface for setup program
(USB/TTL converter)
Part no. 00456352

## Setup program

Versions:
Setup program with program editor ${ }^{1}$ Part no. 00399795

Setup program with program editor and startup ${ }^{1}$ Part no. 00403094

Setup program with program editor, startup
 and Teleservice ${ }^{1}$
Part no. 00400012

## Program

editor
Program editor (software) ${ }^{1}$
Part no. 00400460


1. Requirements: Windows ${ }^{\circledR}$ 2000, XP, Vista, 7 (32-bit and 64 -bit); PC with 512 MByte RAM, 60 MByte free on HD, CD-ROM, 1 free serial or USB interface

## 2 Identifying the instrument version

## PC evaluation software

PCC+PCA (software)
under Windows ${ }^{\circledR} \mathrm{XP}$, Vista, 7 (32-bit and 64-bit)


### 2.3 Nameplate

| Position | The nameplate is glued onto the instrument. |  |  |
| :---: | :---: | :---: | :---: |
| Contents | It carries important infomation, for instance: |  |  |
|  | Description | Designation on nameplate | Example |
|  | Instrument type | Typ | 703590/281-8800-350000-23-00/000 |
|  | Part no. | TN | 00394875 |
|  | Serial No. | $\mathrm{F}-\mathrm{Nr}$ | 0070033801207270006 |
|  | Supply voltage | -0 | $\begin{aligned} & \text { AC } 110 \ldots 240 \mathrm{~V}+10 /-15 \% \text {, } \\ & 48 \ldots 63 \mathrm{~Hz} \end{aligned}$ |

Type $\quad$ Compare the type that has been delivered with that specified in your order documentation. You can use Chapter 2.1 "Type designation" to identify the type.

The part no. is an unambiguous designation in the catalog. It is used for communication between the sales department and the customer.

F-Nr The factory serial number also reveals the date of production (year/week) and the hardware version number.

## Production date

Example. F-Nr $=0070033801207270006$
The positions 12-15 (from the left) indicate that the instrument was manufactured in week 27 of 2007.

Hardware
Example: $\mathrm{F}-\mathrm{Nr}=0070033801207270006$
If the 11th position (from the left) has a 2 or higher, then the instrument has been fitted with the new analog input cards.

2 Identifying the instrument version

## 3 Mounting

### 3.1 Location and climatic conditions

The conditions at the location must meet the requirements specified in the Technical Data. The ambient temperature at the location can be -5 to $+50^{\circ} \mathrm{C}$, with a relative humidity of not more than $75 \%$.

### 3.2 Dimensions

Side view


Panel cut-out to ISO 43700


Front view


Rear view


| Close mounting <br> Minimum spacing of panel cut-outs  <br> horizontal $\quad 54 \mathrm{~mm}$ |  |
| :--- | :--- |
| vertical | 41 mm |

## 3 Mounting

### 3.3 Fitting



* From the back, fit the seal that is supplied onto the instrument.
* Insert the instrument from the front into the panel cut-out.
* From behind the panel, slide the mounting brackets into the guides on the sides of the housing. The flat faces of the mounting brackets must lie against the housing.
* Push the mounting brackets up to the back of the panel, and tighten them evenly with a screwdriver.


### 3.4 Cleaning the front panel

## Cleaning

 The front panel can be cleaned with normal commercial washing, rinsing and cleaning agents. It has a limited resistance to organic solvents (e.g. methylated spirits, white spirit, P1, xylol etc.). Do not use high-pressure cleaning equipment.
### 4.1 Installation notes

- The choice of cable, the installation and the electrical connection must conform to the requirements of VDE 0100 "Regulations on the Installation of Power Circuits with Nominal Voltages below 1000 V" or the appropriate local regulations.
- At maximum load, the cables must be heat resistant up to at least $80^{\circ} \mathrm{C}$.
- The electrical connection may only be carried out by qualified personnel.
- The instrument must be disconnected on both poles from the electrical supply if contact with live parts is possible.
- The load must be fused for the maximum relay current, in order to prevent the contacts of the output relay becoming welded in the event of a shortcircuit.
- The user must not replace internal safety devices. The instrument must be returned to the supplier for repair in the event of a fault.
- Electromagnetic compatibility conforms to the standards and regulations cited in the technical data.
$\Rightarrow$ Chapter 10.1 "Technical data"
- Run input, output and supply cables separately and not parallel to one another.
- All input and output cables without connection to the mains supply must be arranged as twisted and screened cables.
Ground the screen on the instrument side to the potential earth.
- The PE terminal on the instrument must be earthed. This cable must have at least the same conductor cross-section as used for the supply cables. Grounding and earthing leads must be wired in a star configuration to a common earth point that is connected to the protective earth of the electrical supply. Do not loop earth or ground connections, i.e. do not run them from one instrument to another.
- Do not connect any additional loads to the supply terminals of the instrument.
- The instrument is not suitable for use in areas with an explosion hazard (Ex areas).
- In addition to faulty installation, incorrect settings on the controller (setpoint, data of the parameter and configuration levels, internal alterations) can also interfere with the correct operation of dependent processes, or even cause damage. Safety devices should always be provided that are independent of the controller (such as overpressure valves or temperature monitors/limiters) and only capable of adjustment by specialist personnel. Please observe the relevant safety regulations for such matters. Since adaptation (self-optimization) cannot be expected to handle all possible control loops, an unstable parameterization is theoretically possible. The stability of the actual value that is produced should therefore be checked.


## 4 Electrical connection

- Since the instrument is short-circuit proof only to a limited extent, an external fusing and a switch-off facility must be provided. Depending on the supply voltage, the following values apply to the external fusing: AC/DC 20 to $53 \mathrm{~V}, 48$ to 63 Hz fuse 4 A slow
(only for operation in SELV or PELV current circuits)
AC 110 to $240 \mathrm{~V}+10 /-15 \%, 48$ to 63 Hz fuse 0.8 A slow
- The measurement inputs of the controller must not exceed a maximum potential of AC 30 V or DC 50 V against PE .


### 4.2 Electrical isolation



## 4 Electrical connection

### 4.3 Connection diagram



## Analog inputs (slots: IN1to 8)



With current input, care must be taken that the
max. input current of 50 mA is not exceeded.

## 4 Electrical connection

Outputs (slots: OUT1 to 6)


* or supply for two-wire transmitter

| Slot | Plug-in pcb with <br> 1 output | Plug-in pcb with <br> 2 outputs |
| :--- | :--- | :--- |
| OUT1 | Output 1 | Output 1+7 |
| OUT2 | Output 2 | Output 2+8 |
| OUT3 | Output 3 | Output 3+9 |
| OUT4 | Output 4 | Output 4+10 |
| OUT5 | Output 5 | Output 5+11 |
| OUT6 | Output 6 | Output 6+12 |

## Output board "2 make contacts"

com
It is not permissible to combine supply circuits and circuits with safety extra-low voltage on one board.

## Voltage supply



## Interface COM 2



PROFIBUS-DP


## 5 Operation

### 5.1 Operation: General

### 5.1.1 Displays and controls

## Front view



Displays and controls

| No. | Meaning |
| :--- | :--- |
| 1 | Status line <br> with time, date, name of screen template and instrument name. |
| 2 | Color screen (screen templates can be configured) <br> Factory setting for fixed-setpoint controller: process value, setpoint, <br> output level (bar graph). <br> Factory setting for program controller: process value, setpoint, program <br> number/name, segment number, remaining program time |
| 3 | Info/alarm symbol |
| 4 | Current meaning of the softkeys |
| 5 | Keys <br> (Softkeys) with various interpretations in the color screen. |
| 6 | Info/alarm display <br> Display of infos (blue) or alarms (red). |
| 7 | EXIT/manual key <br> for manual mode, navigation, and for a program pause. |
| 8 | Operating mode/state |
| 9 | Power LED <br> lights up green when voltage is applied. |
| 10 | Status indicators of the outputs (configurable) |

## 5 Operation

## Symbols in display

| Symbol | Bedeutung |
| :---: | :--- |
| Info | Alarm is present <br> Alarm messages must be acknowledged (see explanation for <br> "screen operating loop") |
| Automatic mode/Program is running |  |
| Pr | Manual ("Hand") operating mode <br> Enables setpoint and control contact definition in the case of a <br> program controller. |
| Enables output definition in the case of a fixed-setpoint or program |  |
| controller. |  |

## 5 Operation

### 5.1.2 Overview of operation


$(>2 \mathrm{~s})=$ back to the screen operating loop
Time-out = If no key is pressed, the display will automatically return to the screen operating loop after a definable time.

## 5 Operation

## Screen operating loop

The operating loop contains the screen templates for a maximum of four controller channels, the collective picture of all the active controller channels, the recording function as well as two freely definable screen templates.
The screen templates can be individually switched into display.
$\Rightarrow$ Chapter 7.9 "Display"


Meaning of the keys:
$m$-m - additional functions of the softkeys
$\nabla 7$ - start/cancel self-optimization for the channel that is displayed
Ack - acknowledge alarm messages and limit comparators

- step on one segment (program controller)
- controller manual mode (program controller)

Softk. 1 - key can be freely assigned (only through setup program)

## Details

The states and values of a large variety of process variables are shown clearly and in a structured form.


* only for program controller/ generator


Details

- scroll screen down


## 5 Operation

## Menu



Menu

## User level

With the help of this screen template, the user can compile parameters that have to be frequently altered, through the setup program. This screen template is only displayed when appropriately configured.
$\Rightarrow$ Operating Manual 703590.6

## Operating level

Here the setpoints for all eight controller channels are defined and selfoptimization is started. In the case of a program controller, system states can additionally be set in the manual ("Hand") operating mode.
$\Rightarrow$ Chapter 8.1 "Self-optimization"

## Parameter level

The controller parameters for the controller channels are defined here.
$\Rightarrow$ Chapter 6 "Parameterization"

## Configuration level

The instrument is adapted to the control task here.
$\Rightarrow$ Chapter 7 "Configuration"

## Device info

Information on hardware equipment, software version and instrument options are shown here.

## Service mode

This screen template can only be accessed by service personnel.

## Event list

The last 16 events with date, time and designation are displayed here.

- Supply ON/OFF
- Overrange/underrange and probe break
- Math error
- Freely definable alarms


## 5 Operation

### 5.1.3 Entering values and selecting settings



## 5 Operation

### 5.1.4 Setpoint input

Configuration in controller

Each controller channel has four setpoints which can be switched by logic signals. Setpoints for the controller are defined as shown below.


* Exception: configuration of a program controller with external setpoint input. In this case, setpoint 2 corresponds to the program setpoint.
$\Rightarrow$ Chapter 7.2 "Controller"
$\Rightarrow$ Chapter 7.6 "Logic functions"


## 5 Operation

### 5.1.5 Recording

## Screen template

The recording function can be used to show the traces of up to four analog signals and the switching actions of up to three logic signals.


## Keys

## History

Data that have already been recorded can be viewed here. The recorded time span is shown on the time axis. The recorded time span depends on the sampling rate (adjustable). The ring memory contains 43200 measurement points.

* Shift the trace with
」,
 $\square$ ,
* Call up zoom function with O (key field is switched)


## 5 Operation

* Zoom in/zoom out of trace with $\qquad$
↔- or
* Return to the scroll functions with $\qquad$
* Quit history with



### 5.2 Operation: Controller

If the instrument has been configured as a fixed-setpoint controller, the following actions can be performed in automatic/manual mode:

### 5.2.1 Altering the setpoint

The active setpoint of a controller channel can be altered in the corresponding screen template or at the operating level. The controller must be in automatic mode.

* Alter setpoint using
 and

(the meaning of the softkeys changes, an input window appears)

* Shift the decimal point using $\quad 1$. and $\square .1$
* New setpoint is automatically accepted after 2 sec or by using Enter


## 5 Operation

### 5.2.2 Manual mode

## Altering the output

## Altering the output for modulating controllers

The control loop of the controller channel that is displayed can be interrupted by switching to manual mode.

* Switch to manual mode with (hold key down for at least 2 sec!)
(the symbol for manual mode appears in the operating mode display)
* Alter the output with $\square$ and

(the meaning of the softkeys changes, an input window appears)

* The new output is automatically accepted after about 2 sec or by using Enter

In the case of modulating controllers, the keys are used to directly influence the right and left motion of a motorized actuator. The output is only indicated if the output feedback is connected.


The manual mode can be inhibited.

### 5.3 Operation: Program controller/generator

If the instrument is configured as a program controller/generator, programs have to be created first, by using the internal program editor or the setup program.
Setpoint limiting for the program channels is performed via the setpoint limitation for the controller channels. There is a fixed 1 to 1 assignment, which is independent of the program setpoint channel that has actually been selected. Example: Setpoint limiting for program channel 2 is always performed via the setpoint limitation of controller channel 2.
$\Rightarrow$ Chapter 7.3 "Generator"

## 5 Operation

### 5.3.1 Program editor

## Input template

* Call up with Proq $\rightarrow$ Edit program
* Select program using the cursor keys
* Select program channel using the cursor keys


Lower and upper tolerance band
Number of repeat cycles (Cy) with start segment (No.)
Control contacts 8 to $1(1=O n)^{1}$
Segment time
Segment setpoint
Segment number
$m$ - call up additional softkey functions

1. Control contacts 9 to 16 can only be displayed in the setup program

## 5 Operation

General
50 programs with up to 99 segments each can be programmed; a total of 1000 segments can be implemented.
Programs are created by programming setpoints and segment times, segment by segment.
Furthermore, the states of the control contacts 1 to 16 and the active parameter set can be defined for each segment.
The setpoint profiles can be output either as a ramp or a step (configurable).
$\Rightarrow$ Chapter 7.3 "Generator" (setpoint input)
Output as a ramp has been chosen for the following diagrams.


## 5 Operation

## Tolerance band



To monitor the process value, a tolerance band can be applied around the setpoint profile for each segment.
If the upper or lower limit is infringed, a tolerance band signal is generated, which is internally processed or produced via an output.

Example:
If the process value goes above the set tolerance band, the logic function "Program stop" can be used to hold the program until the process value is within the tolerance band.
$\Rightarrow$ Chapter 7.5 "Outputs"
$\Rightarrow$ Chapter 7.6 "Logic functions" (tolerance band signal as program stop)
$\Rightarrow$ Chapter 7.3 "Generator"

## Entering a new program

The segments are edited in sequence when creating a new program.

* Append a new segment to the last segment of the profile trace with


Existing segments can be copied and inserted in another position in the program. The segment that was copied is inserted above the cursor position.

* Position the cursor on the segment to be copied
* Copy segment with Cop4
* Position the cursor on the desired position
* Insert segment with Insert

A new segment can be inserted above the cursor position into an existing sequence of segments.

* Insert segment with Insert

[^1]
## 5 Operation

## Entering repeat cycles

A group of segments that are arranged in sequence can be repeated up to 99 times or repeated endlessly (input: -1 ). The repeat cycles are programmed in the last segment of the group.
Example:
S02 to S04 are to be repeated once.

* Edit segment 4
* Set number of repeat cycles to $\mathrm{Cy}=1$
* Set start segment of repeat to No.=2


Checking the
program profile
The program segments entered in the table can be graphically displayed and checked. Repeat cycles are not taken into account for the display.

* Show program profile with



### 5.3.2 Starting the program

## Immediate start of program

Selecting and starting the program

The program displayed on the screen in the basic status is started.

* Start program with Start

A program can also be selected, started and canceled via the logic functions. The logic function "Program selection" has priority over the settings in the menu "Program start".
$\Rightarrow$ Chapter 7.6 "Logic functions"

The representation of the program selection can be configured as a list or an icon.
$\Rightarrow$ Chapter 7.11 "Device data"

* Call up program selection with Proq $\rightarrow$ Start program
* Select program using the cursor keys
* Confirm the selection by using Enter
* Start program in the basic status, with Start (the program starts immediately from the beginning)


## 5 Operation

## Starting the program with time input

A program can be started at a specific point of time. There are two configurable options:<br>1. Start at a specified date and time<br>2. Start with a specified start delay in hours, minutes and seconds.

$\Rightarrow$ Chapter 7.3 "Generator" (program)
The settings for the time and start delay are reset to their default values after the start of the program.

* Call up program selection with Proq $\rightarrow$ Start program
* Select program using the cursor keys:
* Use $m \mathrm{Cm}$ to switch to other softkey functions
* Change to menu "Program start" with Start
* Enter start time/start date or start delay, start segment and remaining segment time
* Start program with


## 5 Operation

### 5.3.3 Overview of operation

The diagram below provides an overview of the different operating modes and operating options of a program controller.
Many operating options can also be implemented via the logic functions.


Buttons $\square$ and $\qquad$ can be accessed via "Details".

## Basic status

System state
"Hand"

In basic status the system state is defined, with the following factory settings for all program channels:

- controller, control contacts and limit comparators are inactive
- the controller setpoints are 0

The system state can be modified via the setup program.

Setpoints, parameter sets and control contacts can be altered at the operating level, in the manual operating modes "Hand" and "Controller manual mode".

## 5 Operation

Temporary alterations

Temporary alterations are alterations to the current program in the program editor. They are not stored in the program memory, i.e. alterations will be lost after a fresh start.
In the case of alterations concerning the current segment, the setpoint sequence is automatically adapted.

Curve a:
Setpoint progression for alterations in the current segment.

Curve b:
Setpoint progression for subsequent segments or repeat cycles.

If the setpoint is altered at time $\mathrm{t}_{0}$, then the setpoint curve continues its progression with the setpoint that has been entered. During the residual segment time (=the time remaining to the end of the segment) the setpoint moves to the setpoint for the next segment (Curve a).
Example: alteration of A03
Segment setpoint w03: $10 \rightarrow 60$


If the setpoint is altered at time $\mathrm{t}_{0}$, then the setpoint moves to the entered setpoint for the residual segment time. The slope of the ramp is altered (Curve a).
Example: alteration of A04
Segment setpoint w04: $50 \rightarrow 60$


Alteration of the segment time for the current segment

If the segment time is altered, then the the setpoint moves to the following setpoint during the residual segment time (Curve a).

If the new segment time is shorter than the segment time that has already elapsed, then the setpoint curve continues from the start of the next segement.

Example: alteration of A03


Segment time: 4h $\rightarrow 3 \mathrm{~h}$

## 5 Operation

### 5.3.4 Shifting the program profile

The function "External setpoint with correction" can be used to shift the program profile upwards or downwards.


The external setpoint is defined via an analog signal.
$\Rightarrow$ Chapter 7.2 "Controller"

## 6 Parameterization

## General

Two parameters sets can be stored for each controller channel.
The parameter sets can be switched via the logic function, for example.

## Access code Factory-set code: 0001

The access code can be modified via the setup program.

Parameter level $\rightarrow$ Controller 1 (2 to 8) $\rightarrow$ Parameter set 1 (2)

| Parameter | Value range | Factory setting | Meaning |
| :---: | :---: | :---: | :---: |
| Controller structure 1 | P, I, PD, PI, PID | PID | Only PI and PID can be implemented on modulating controllers. |
| Proportional band | 0 to 9999 digits | 0 digits | Size of the proportional band Proportional band $=0$ means that the controller structure is ineffective! (limit comparator response) In the case of continuous controllers, the proportional band must be $>0$. |
| Derivative time | 0 to 9999 sec | 80 sec | Determines the differential component of the controller output signal |
| Reset time | 0 to 9999 sec | 350 sec | Determines the integral component of the controller output signal |
| Cycle time | 0 to 9999 sec | 20 sec | When using a switched output, the cycle time should be chosen so that a) the pulsed energy flow to the process does not cause any impermissible fluctuations of the process value and b) the switching elements are not overloaded. |
| Contact spacing | 0 to 999 digits | 0 digits | The spacing between the two control contacts for 2-setpoint or modulating controllers, or continuous controllers with an integrated actuator driver. |
| Switching differential | 0 to 999 digits | 1 digit | Hysteresis for switching controllers with proportional band $=0$. |
| Actuator time | 5 to 3000 sec | 60 sec | The actual utilized operating time of the regulator valve with modulating controllers or continuous controllers with an integrated actuator driver. |
| Working point | -100 to +100 \% | 0 \% | Output level for P and PD controllers ( $w$ hen $\mathrm{x}=\mathrm{w}$ then $\mathrm{y}=\mathrm{YO}$ ). |
| Output level limiting | 0 to 100 \% | 100 \% | The maximum limit for the output level. |
|  | -100 to +100 \% | -100 \% | The minimum limit for the output level. |
| Minimum relay ON time | 0 to 60 sec | 0 sec | Limits the frequency of switching for switched outputs. |

## 6 Parameterization

|  | Controller structure $\mathbf{2} \boldsymbol{\rightarrow}$ |  |  |
| :--- | :--- | :--- | :--- |
| Controller <br> structure 2 | P, I, PD, PI, PID | PID | The parameters refer to the second controller output for <br> a 3-state controller. |
| Proportional <br> band | 0 0to9999 digits | 0 digits |  |
| Derivative time | 0 to 9999 sec | 80 sec |  |
| Reset time | 0 to 9999 sec | 350 sec |  |
| Cycle time | 0 to 9999 sec | 20 sec |  |
| Switching <br> differential | 0 to 999 digits | 1 digit |  |
| Minimum relay <br> ON time | 0 to 60 sec | 0 sec |  |

The parameter display on the instrument depends on the controller type selected.
$\Rightarrow$ Chapter7.2 "Controller"

## 7 Configuration

## General

The following applies to the representation of parameters and functions at the configuration level:

The parameter is not displayed or cannot be selected if

- the instrument features do not permit the function assigned to the parameter.
Example: Output 3 cannot be configured if no output 3 is available in the instrument.
- the parameter is irrelevant to the function that has been configured.

Example: Analog input 1 is configured to "Pt100", which means that display start and end for standard signals cannot be selected.

Some parameters are only available for a fixed-setpoint controller (with or without ramp function) or a program controller/generator. For fixedsetpoint controllers, these parameters and settings are marked by a superscript " $F$ " (e.g. ramp $^{F}$ ), for program controllers/generators by a " $P$ ".

## Access code

Selectors

Factory-set code: 0002

Selectors are selection menus which fold down when selecting individual parameters.

Two standard selectors are defined for the configuration tables below, for reasons of clarity:

## Analog selector

| Switched off | Switched off |
| :--- | :--- |
| Analog inp.1 | Measurement of analog input 1 |
| to | to |
| Analog inp.8 | Measurement of analog input 8 |
| Math 1 | Result of math formula 1 |
| to | to |
| Math 16 | Result of math formula 16 |
|  |  |
| Process value C1 | Process value for controller 1 |
| Setpoint C1 | Setpoint for controller 1 |
| Ramp end C1 | Ramp end value for controller 1 |
| Control dev. C1 | Control deviation for controller 1 |
| Output C1 | Output for controller 1 (see note on page 39 |
| to | to |
| Process value C8 | Process value for controller 8 |
| Setpoint C8 | Setpoint for controller 8 |
| Ramp end C8 | Ramp end value for controller 8 |
| Control dev. C8 | Control deviation for controller 8 |
| Output C8 | Output for controller 8 (see note on page 39) |

## Analog selector

| Y cascade C1 to | Standardized output with cascade control for controller 1 to |
| :---: | :---: |
| Y cascade C8 | Standardized output with cascade control for controller 8 |
| Setpoint 1 C 1 | Setpoint 1 for controller 1 |
| to | to |
| Setpoint 4 C1 | Setpoint 4 for controller 1 |
| Setpoint 1 C2 | Setpoint 1 for controller 2 |
| to | to |
| Setpoint 4 C2 | Setpoint 4 for controller 2 |
| Setpoint 1 C3 | Setpoint 1 for controller 3 |
| to | to |
| Setpoint 4 C3 | Setpoint 4 for controller 3 |
| Setpoint 1 C4 | Setpoint 1 for controller 4 |
| to | to |
| Setpoint 4 C4 | Setpoint 4 for controller 4 |
| Setpoint 1 C5 | Setpoint 1 for controller 5 |
| to | to |
| Setpoint 4 C5 | Setpoint 4 for controller 5 |
| Setpoint 1 C6 | Setpoint 1 for controller 6 |
| to | to |
| Setpoint 4 C6 | Setpoint 4 for controller 6 |
| Setpoint 1 C7 | Setpoint 1 for controller 7 |
| to | to |
| Setpoint 4 C7 | Setpoint 4 for controller 7 |
| Setpoint 1 C8 | Setpoint 1 for controller 8 |
| to | to |
| Setpoint 4 C8 | Setpoint 4 for controller 8 |
| Marker 1 to | Values which can be described and read out via the interfaces, and can also be processed internally. |
| Marker 4 |  |
| Timer time 1 | elapsed time for timer 1 (in seconds) |
| Timer rem. 1 | remaining running time for timer 1 (in seconds) |
|  |  |
| Timer time 4 | elapsed time for timer 4 (in seconds) |
| Timer rem. 4 | remaining running time for timer 4 (in seconds) |
| Setpt. 1 PCh1 ${ }^{P}$ to | Setpoint 1 for program channel 1 to |
| Setpt. 1 PCh4 ${ }^{\text {P }}$ | Setpoint 1 for program channel 4 |
| Setpt. 2 PCh1 ${ }^{\text {P }}$ | Setpoint 2 for program channel 1 |
|  | to |
| Setpt. 2 PCh4 ${ }^{\text {P }}$ | Setpoint 2 for program channel 4 |
| Seg. end val.PCh1 ${ }^{P}$ | Current final segment value for program channel 1 to |
| Seg. end val.PCh4 ${ }^{\text {P }}$ | Current final segment value for program channel 4 |
| Output 1 C 1 | Controller output 1 for controller 1 |
| Output 2 C1 | Controller output 2 for controller 1 |
| to | to |
| Output 1 C8 | Controller output 1 for controller 8 |
| Output 2 C8 | Controller output 2 for controller 8 |

## 7 Configuration

## Analog selector

| RemSegT PCh1 ${ }^{\mathrm{P}}$ | Remaining segment time for program channel 1 (in seconds) |
| :--- | :--- |
| to | to |
| RemSegT PCh4 ${ }^{\mathrm{P}}$ | Remaining segment time for program channel 4 (in seconds) |
| Seg. Time PCh1 ${ }^{\mathrm{P}}$ | Segment time for program channel 1 (in seconds) |
| to | to |
| Seg. Time PCh4 ${ }^{\mathrm{P}}$ | Segment time for program channel 4 (in seconds) |
| Progam time | Total program time (in seconds) |
| RemProgT | Remaining run time of program (in seconds) |
| Analog value | any analog value (from address) |
| internal Pt100 | Temperature measurement of internal Pt100 |
| Sampling time | Sampling time of instrument |

Times are shown in the format hh:mm:ss.

The analog signals "Output C1to C8" should only be used for the display on the screen.
For the physical controller output, the signals
"Output 1 (2) C1to C8" should be used.
During self-optimization, the signals
"Output C1 to C8" are switched off.

## Binary selector

| Switched off | Switched off |
| :--- | :--- |
| Output 1 C1 |  |
| Output 2 C1 |  |
| to | Controller output 1 for controller 1 |
| Output 1 C8 | Controller output 2 for controller 1 |
| Output 2 C8 | to |
| Limit comp. 1 | Controller output 1 for controller 8 |
| to | Controller output 2 for controller 8 |
| Limit comp.16 | Limit comparator 1 |
| Contr. contact. 1P | to |
| to | Limit comparator 16 |
| Contr. contact 16 | Control contact 1 |
| Logic inp. 1 | to |
| to | Control contact 16 |
| Logic inp. 6 | Logic input 1 |
| Logic 1 | to |
| to | Logic input 6 |
| Logic 16 | Result of logic linkage 1 |
| Timer 1 | to |
| to | Result of logic linkage 16 |
| Timer 4 | Timer 1 |
| Marker 1 | to |
| to | Timer 4 |
| Marker 4 | Values which can be described and read out via the |
| interfaces, and can also be processed internally. |  |

## 7 Configuration

## Binary selector

| Binary logic value | any binary logic value (from address) |
| :--- | :--- |
| Program end ${ }^{\mathrm{P}}$ | Program end signal |
| Ramp end $1^{\mathrm{F}}$ | Ramp end signal for controller 1 |
| to | to |
| Ramp end $8^{\mathrm{F}}$ | Ramp end signal for controller 8 |
| Tolerance band ${ }^{\mathrm{P}}$ | Signal on going above/below tolerance band |
| Manual mode C1 | Controller 1 in manual mode / program pause |
| to | to |
| Manual mode C8 | Controller 8 in manual mode / program pause |
| Transmitter | Signal always active |
| Logic OFF | Logic 0 |
| Logic ON | Logic 1 |

Definition of program times

Different times are defined for the program controller/generator, which can be internally processed and displayed.


| (1) Program time | (3) Segment time |
| :--- | :--- |
| (2) Remaining program time | (4) Remaining segment time |

## 7 Configuration

### 7.1 Analog inputs

## Configuration

Analog inputs
Controller
Generator
Limit comparators
Outputs
Logic functions
Math / Logic
C-level
Display
Interfaces
Device data
Recording
Timers

Depending on the instrument version, up to eight analog inputs are available. The analog inputs are numbered in sequence (IN 1 to 8 ) according to their slot assignment.

## Analog input 1 (2 to 8) $\rightarrow$

## Probe

| Value/selection | Description |
| :--- | :--- |
| no funct. | No function |
| RTD 3-wire | Resistance thermometer in 3-wire circuit |
| RTD 2-wire | Resistance thermometer in 2-wire circuit |
| T/C int. | Thermocouple (internal temperature compensation) |
| T/C ext. | Thermocoupe (external temperature compensation) |
| T/C const. | Thermocouple (constant temperature compensation) |
| Res. trans. | Resistance transmitter |
| Heater current | Heater current AC 0 to 50 mA |
| 0 to 20 mA | 0 to 20 mA |
| 0 t t 10 V | 0 to 10 V |
| 0 to 1 V | 0 to 1 V |
| 0 to 100 mV | 0 to 100 mV |
| -10 to +10 V | -10 to +10 V |
| -1 to +1 V | -1 to +1 V |
| -100 to +100 mV | -100 to +100 mV |
| 4 to 20 mA | 4 to 20 mA |
| 2 to 10 V | 2 to 10 V |
| 0.2 to 1 V | 0.2 to 1 V |
| 20 to 100 mV | 20 to 100 mV |
| -6 to 10 V | -6 to 10 V |
| -0.6 to 1 V | -0.6 to 1 V |
| -60 to +100 mV | -60 to +100 mV |
|  | factory-set on analog input 2 to 8 : no funct. |

Factory settings are shown bold.

## 7 Configuration

| Linearization | Analog input 1 (2 to 8) $\rightarrow$ |  |
| :---: | :---: | :---: |
|  | Value/selection | Description |
|  | Linear <br> Pt100 <br> Pt100 JIS <br> Ni100 <br> Pt500 <br> Pt1000 <br> Ni1000 <br> Pt50 <br> CU50 <br> Pt K9 <br> KTY11-6 <br> Fe-Con J <br> NiCr-Con E <br> NiCr-Ni K <br> NiCrSi-NiSi N <br> Cu-Con T <br> Pt30Rh-Pt6Rh B <br> Pt13Rh-Pt R <br> Pt10Rh-Pt S <br> Cu-Con U <br> Fe-Con L <br> W5Re_W26Re C W3Re_W25Re D W3Re_W26Re C-level Customized 1 Customized 2 Customized 3 Customized 4 | For customized linearization (e.g. "customized 1") a maximum of 20 knee-points can be implemented, or a 5th order polynominal function programmed (only with setup program). <br> For the linearization "KTY11-6", the resistance is $2 \mathrm{k} \Omega$ at $25^{\circ} \mathrm{C}$. The resistance value can be adapted via the parameter "KTY: $\Omega$ at $25^{\circ} \mathrm{C} / 77^{\circ} \mathrm{F}$ ". <br> Do not use C-level linearization! <br> The correct setting is described in Chapter 7.8.1 "C-level control example" |
| Offset | -1999 to 0 to +9999 | The offset is used to correct a measured value by a certain amount upwards or downwards. <br> The controller uses the corrected value (=displayed value) for its computation. This value does not correspond to the actual measured value. If incorrectly applied, this can result in impermissible values of the control variable. |

Factory settings are shown bold.

Range start Range end

Display start
Display end

Filter

Fixed temperature
compensation
External temperature compensation

Heater current monitoring (output)

KTY: $\Omega$ at $25^{\circ} \mathrm{C} /$ $77^{\circ} \mathrm{F}$.

## Start value

End value

Analog input 1 (2 to 8) $\rightarrow$

| Value/selection | Description |
| :---: | :---: |
| -1999 to +9999 | The instrument will change over earlier to the response defined for overrange/underrange if the range is restricted. |
| -1999 to +9999 |  |
|  | Example: <br> Range: Pt100 -200 to $+850^{\circ} \mathrm{C}$. An alarm message is to be generated for temperatures outside the range 15 to $200^{\circ} \mathrm{C}$. <br> $\rightarrow$ Range start: 15 <br> Range end: 200 |
| -1999 to 0 to +9999 | On transducers with standard signal and on potentiometers, a display value is assigned to the physical signal. |
| -1999 to 100 to +9999 |  |
|  | Example: 0 to $20 \mathrm{~mA}=0$ to $1500^{\circ} \mathrm{C}$. |
|  | The range of the physical signal can be $20 \%$ wider or narrower without generating an out-of-range signal. |
| 0 to 0.6 to 100 sec | To adjust the digital input filter (0sec $=$ filter off). $63 \%$ of the alterations are accounted for after $2 x$ filter time constant at a signal step change. <br> When the filter time constant is large: <br> - high damping of disturbance signals <br> - slow reaction of the process value display to process value changes <br> - low limit-frequency (2nd order low-pass filter) |
| 0 to 50 to 100 | Temperature of the external cold-junction thermostat. |
| Analog inp. 1 <br> Analog inp. 2 <br> Analog inp. 3 <br> Analog inp. 4 | Measurement of the cold-junction temperature with an external temperature probe. |
| no funct. Output 1 to Output 12 | The heater current is evaluated using a current transformer with a standard signal output, which can be monitored by linking the analog input with a limit comparator. The measurement is always made when the heating contact is closed. The measurement is retained until the next measurement. |
| 0 to 2000 to 4000 | Resistance at $25^{\circ} \mathrm{C} / 77{ }^{\circ} \mathrm{F}$ with linearization "KTY 11-6" |
| Recalibration $\rightarrow$ |  |
| -1999 to 0 to +9999 | As opposed to all the other settings, entry of the start and end value is linked to the latest measurement at the input concerned. As a rule, these values cannot be adopted by another instrument. |
| -1999 to 1 to +9999 |  |

Factory settings are shown bold.

## 7 Configuration

Customized recalibration

A signal is processed electronically (conversion, linearization ...) to produce a measured value via the analog inputs of the controller. This measured value enters into the computations of the controller and can be visualized on the displays (measured value = displayed value).
This fixed relationship can be modified if required, i.e. the position and the slope of the measurement characteristic can be altered.


## 7 Configuration

## Procedure

## Programming

Apply two measurement points ((1), (3)), one after another, to the controller; they should be as far apart as possible.
At these measurement points, enter the required display value (start value, end value) in the controller. A reference instrument is most convenient for determining the measured values M1 and M2.
Measurement conditions must remain stable during programming.

* Move to measurement point (1)
* Enter start value (2) ${ }^{1}$
* Move to measurement point (3)
* Enter end value E (4) ${ }^{1}$


If recalibration is carried out without a reference instrument, the offset $\Delta$ must be taken into account when moving to measurement point (3).

To cancel recalibration, the start and end values have to be programmed to the same value. This automatically sets the start value to 0 and the end value to 1 .

Any subsequent recalibration will otherwise be based on the corrected characteristic.

1. If start value $=0$ or end value $=1$ is to be set, then the value must first be altered using $\qquad$ or $\qquad$ to enable correction.

## 7 Configuration

### 7.2 Controller

## Configuration

Analog inputs

## Controller

Generator
Limit comparators
Outputs
Logic functions
Math / Logic
C-level
Display
Interfaces
Device data
Recording
Timers

| Controller type | Value/selection | Description |
| :---: | :---: | :---: |
|  | 2-state contr. <br> 3-state contr. Modulating ActuatingC. Cont. | 2-state controller <br> 3-state controller <br> Modulating controller <br> Continuous controller with integral actuator driver <br> Continuous controller |
| Control action | Direct Inverse | Direct <br> Inverse <br> inverse: <br> The controller output Y is $>0$ when the process value is smaller than the setpoint (e. g. heating). <br> direct: <br> The controller output Y is $>0$ when the process value is larger than the setpoint (e. g. cooling). |
| Inhibit manual mode | Enabled Inhibited | If the manual mode is inhibited, changing over to "manual" is not possible from the keys or via the logic input. |
| Manual output | -100 to 101 | Defines the output after changing over to manual mode. 101 = last output |
| Range output | -100 to 0 to 101 | Output on out-of-range 101 = last output |

Factory settings are shown bold.

| Dead band | Controller 1 (2 to 8) $\rightarrow$ Configuration |  |
| :---: | :---: | :---: |
|  | Value/selection | Description |
|  | 0 to 100 | The output movement is suppressed within the dead band; e. g. with noisy signals. <br> The dead band is only effective for controller structures with an I-component. |
| External setpoint | no correction with correction | External setpoint input without correction <br> External setpoint input with correction <br> External setpoint with correction <br> External setpoint + setpoint $1=$ present setpoint <br> The external setpoint is corrected up or down from the keypad (setpoint 1). The display shows the present setpoint. <br> Activating the function: <br> $\Rightarrow$ Controller $1 \rightarrow$ Inputs $\rightarrow$ External setpoint |
| Setpoint start | -1999 to +9999 | Setpoint limiting prevents the input of values outside the defined range. |
| Setpoint end | -1999 to +9999 | defined range. <br> The setpoint limits are not effective with setpoint input via the interface. <br> The correction value is limited for external setpoint with correction. |
| Output start | -1999 to 0 to +9999 | Output standardization for cascade control: If the controller channel serves as a master controller, then the controller output signal (output 0 to $100 \%$ ) must be scaled to match the setpoint range of the slave controller. |
| Output end | -1999 to 100 to +9999 |  |

Factory settings are shown bold.

Controller 1 (2 to 8) $\rightarrow$ Inputs

| Process value | (Analog selector) Analog inp. 1 | Defines the source for the process value of the control channel. |
| :---: | :---: | :---: |
| External setpoint | (Analog selector) Switched off | Activates the external setpoint input and defines the source for the external setpoint. <br> Cascade controller: <br> The standardized output of the master controller ( Y cascade CX) has to be defined here for the slave controller. |
| Program setpoint | (Analog selector) Setpt. 1 PCh1 | Assigns one of the four available profile traces to the controller channel. <br> "Switched off" means that the controller channel responds as for fixed-setpoint control (on channels 2 to 8 ). |
| Manual output | (Analog selector) Switched off | The manual output is defined through an analog signal, instead of via the keys or the interface. |

Factory settings are shown bold.

## 7 Configuration

|  | Value/selection | Description |
| :--- | :--- | :--- |
| Output feedback | (Analog selector) <br> Switched off | Defines the source for output feedback. <br> Output feedback must be configured in the case of a <br> continuous controller with integral actuator driver! |
| Additive <br> disturbance | (Analog selector) <br> Switched off | Defines the source for the additive disturbance. <br> The analog value is added to the present output. |
| Multiplicative <br> disturbance | (Analog selector) <br> Switched off | Defines the source for the multiplicative disturbance. <br> The analog value is multiplied by the proportional band. |

Factory settings are shown bold.

## Controller 1 (2 to 8) $\rightarrow$ Self-optimization

| Method | Value/selection | Description |
| :---: | :---: | :---: |
|  | Oscillation Step response | One of two procedures can be selected for selfoptimization. <br> $\Rightarrow$ Chapter 8 "Optimization" |
| Self-optimization | Enabled Inhibited | If the function is inhibited, self-optimization cannot be started from the keys or the logic input. |
| Output 1 for "Tune" | Relay <br> Solid-state + logic <br> Analog | The type of the physical output for the signal of the controller outputs 1 and 2 has to be defined. |
| Output 2 for "Tune" | Relay <br> Solid-state + logic Analog |  |
| Steady output | -100 to 0 to $+100 \%$ | Initial output level with step response |
| Step size | 10 to 20 to $100 \%$ | Step size with step response |

## 7 Configuration

### 7.3 Generator

## Configuration

Analog inputs
Controller

## Generator

Limit comparators
Outputs
Logic functions
Math / Logic
C-level
Display
Interfaces
Device data
Recording
Timers

## Function

## Ramp function

The basic function of the instrument is defined here. The instrument with all the available controller channels can be operated as fixed-setpoint controller, program controller or program generator.

Furthermore, ramp functions (fixed-setpoint controller) can be activated for the individual controller channels and different parameters defined for the program controller/generator.
If the instrument has the basic function of a program controller/generator, channels 2 to 8 can still be operated as a fixed-setpoint controller.
Controller $\rightarrow$ Inputs $\rightarrow$ Program setpoint (switched off)

## Function $\rightarrow$

| Value/selection | Description |
| :--- | :--- |
| Fixed-setpt.contr. | Basic instrument function |
| Progr.contr. |  |
| Progr.gen. |  |

Factory settings are shown bold.

A rising or a falling ramp function can be implemented. The ramp-end value is determined by the setpoint input.


The ramp function is interrupted on a probe break, or for manual mode. The outputs react as for overrange/underrange (configurable).

## 7 Configuration

The ramp function can be stopped and canceled via the logic functions.
$\Rightarrow$ Chapter 7.6 "Logic functions"

| Function ${ }^{\text {F }}$ | Inactive Active | Defines whether the ramp function is to be activated for the corresponding controller channel. |
| :---: | :---: | :---: |
| Unit of slope ${ }^{\text {F }}$ | ${ }^{\circ} \mathrm{C} /$ minute <br> ${ }^{\circ} \mathrm{C} /$ hour <br> ${ }^{\circ} \mathrm{C} /$ day | Defines the unit of the slope in degree Celsius per unit of time. |
| Ramp slope ${ }^{\text {F }}$ | 0 to 9999 | Amount of slope |
|  | Factory settings are shown bold. F = parameter only available for fixed-setpoint controller |  |


| Program start ${ }^{\text {P }}$ | Program $\rightarrow$ |  |
| :---: | :---: | :---: |
|  | Value/selection | Description |
|  | from the beginning from the process value from the time | from the beginning: <br> Program start at the first programmed setpoint <br> from the process value: <br> The present process value from program channel 1 is accepted as the first setpoint. All the other channels run synchronously from this moment on. <br> from the time: <br> The present time in a $24-\mathrm{hr}$ program is taken as the starting time. |
| Response for range | Continue Progr.stop | Response of the program sequence to out-of-range |

Factory settings are shown bold.
$\mathrm{P}=$ parameter only available for program controller/generator

| Response to power failure ${ }^{P}$ | Program $\rightarrow$ |  |
| :---: | :---: | :---: |
|  | Value/selection | Description |
|  | Prog.canceled Continue Standstill Continue X\% Continue PV | Response of the program run on a power failure <br> Program canceled: <br> Program run canceled; instrument switches to basic status. <br> Continue: <br> The program continues from the point at which it was canceled at the time of the supply failure. <br> Standstill: <br> Outputs, limit comparators, control contacts and controller respond as was defined in the system status "Basic status". A message appears asking you to either cancel program or resume it. <br> Continue at deviation $<\mathrm{X}$ \%: <br> The program continues from the point at which it was interrupted at the time of the power failure, if the deviation between the process value before and after the power failure does not exceed a programmable percentage value (process value deviation) on program channel 1. <br> If this value is exceeded, the instrument goes into standstill. (The instrument goes into the basic status, the program setpoint at the moment of interruption is taken as the setpoint.) <br> Continue at process value: <br> This sign of the gradient (falling or rising edge) at the time of the power failure is stored in the event of a power failure. After the supply voltage has been restored, the program is checked from the beginning to find matching process values and setpoints on program channel 1. The program continues from the point at which the process value matches the setpoint and the sign of the gradient corresponds to the gradient that was stored. |
| Process value deviation <br> Setpoint input ${ }^{P}$ | 0 to 10 to $100 \%$ | Maximum deviation on a restart after a power failure (continue at deviation $<\mathrm{X} \%$ ) |
|  | Setpoint ramp Setpoint step |  |

Factory settings are shown bold.
$P=$ parameter only available for program controller/generator

## 7 Configuration

| Start at time ${ }^{\text {P }}$ | Program $\rightarrow$ |  |
| :---: | :---: | :---: |
|  | Value/selection | Description |
|  | No Yes | Starts the program after an adjustable start delay, or at a time that can be defined (start with time). <br> Setting the clock: <br> $\Rightarrow$ Chapter 7.11 "Device data" |
| Program end time ${ }^{P}$ | -1 to 0 to 9999 sec | Duration of program end signal If a program is ended, the program end signal is switched on for a definable time period and can, for example, be output via a logic output. <br> $-1=$ continuous signal until acknowledgement via button $\Rightarrow$ Chapter 7.5 "Outputs" |
| Function control ${ }^{P}$ <br> $\rightarrow$ Controller 1 to 4 <br> $\rightarrow$ Limit comparator 1 to 16 | Generator control <br> Control contact 1 to <br> Control contact 16 | Defines when controllers and limit comparators are active. <br> Generator control: <br> Controllers and limit comparators are active when a program is running (automatic mode); otherwise according to defined system state for the basic status in the setup program <br> Control contact: <br> Controllers and limit comparators are only active when the control contact is ON. |
| Process value inputs ${ }^{\text {P }}$ <br> $\rightarrow$ Proc.val. for program channel 1 to 4 | (Analog selector) Process value C1 | Value to which the tolerance band and range monitoring refers to in a program. |

Factory settings are shown bold.
$P=$ parameter only available for program controller/generator

## 7 Configuration

### 7.4 Limit comparators

## Configuration

Analog inputs
Controller
Generator

## Limit

## comparators

Outputs
Logic functions
Math / Logic
C-level
Display
Interfaces
Device data
Recording
Timers

## Limit

comparator functions

Limit comparators (limit monitors, limit contacts) can be used to monitor an input variable (limit comparator process value) against a fixed limit or another variable (limit comparator setpoint). When a limit is exceeded, a signal can be output or an internal controller function initiated.
16 limit comparators are available.

Limit comparators can have different switching functions.
Ik1
Ik2
lk3




Ik4


Ik5


Ik6


Ik7


Ik8

lk1 to Ik6:
Monitoring referred to the limit comparator setpoint.
1k7//k8:
Monitoring referred to a fixed value AL
$\mathrm{w}=$ limit comparator setpoint, $\mathrm{AL}=$ limit value,
$\mathrm{x}=$ limit comparator process value, $\mathrm{X}_{\mathrm{Sd}}=$ switching differential
Limit range AL with Ik1 and Ik2: 0 to 9999

## 7 Configuration

| LK function | Limit comparator 1 (2to 16) $\rightarrow$ |  |
| :---: | :---: | :---: |
|  | Value/selection | Value/selection |
|  | no funct. LK type 1 to LK type 8 | Limit comparator function |
| Limit value | -1999 to 0 to +9999 | Limit value to be monitored |
| Switching differential | 0 to 1 to 9999 | Switching differential |
| Action | Absolute Relative | see explanation below |
| Range response | Relay OFF <br> Relay ON | Function on over/underrange <br> If a limit comparator is connected to an output, then the setting "Output signal on over/ underrange" of the output has priority. <br> $\Rightarrow$ Chapter 7.5 "Outputs" |
| Switch-on delay Switch-off delay Acknowledgement | 0 to 9999 sec | Delays the switch-on edge by a definable time period |
|  | 0 to 9999 sec | Delays the switch-off edge by a definable time period |
|  | none <br> when active always | none: <br> The limit comparator is automatically reset when active: <br> The limit comparator must be acknowledged; acknowledgment is only possible in the inactive condition always: <br> The limit comparator must be acknowledged; acknowledgment is also possible in the active condition |
| Pulse time | 0 to 9999 sec | The limit comparator is automatically reset after an adjustable time period. |
| LK process value | (Analog selector) Switched off | Limit comparator process value |
| LK setpoint | (Analog selector) Switched off | Limit comparator setpoint (only for lk1 to lk6) |

Factory settings are shown bold.

## 7 Configuration

Absolute

Relative The limit comparator is in the OFF status.
An alteration of the limit value or the (limit comparator) setpoint could cause the limit comparator to switch ON. Such a reaction will be suppressed, and this condition is maintained until the (limit comparator) process value has moved away from the switch-on region (gray area).

Example:
Monitoring the (controller) process value x with function lk4
Setpoint alteration $\mathrm{w}_{1} \rightarrow \mathrm{w}_{2}$
a) Initial condition

b) Condition at the time of the alteration.

The limit comparator remains "OFF" although the process value is within the switch-on region.

c) Stabilized condition

The limit comparator again operates in accordance with its function.


This function also prevents a limit comparator from being triggered during the start-up phase.

## 7 Configuration

### 7.5 Outputs

## Configuration

Analog inputs
Controller
Generator Limit comparators

## Outputs

Logic functions
Math / Logic
C-level
Display
Interfaces
Device data
Recording
Timers

## Numbering of Outputs

|  | Analog outputs $\rightarrow$ Analog output 1 (2 to 6) $\rightarrow$ |  |
| :---: | :---: | :---: |
|  | Value/selection | Description |
| Function | (Analog selector) Analog inp. 1 | Factory-set for analog output 2 to 6: Switched off $\Rightarrow$ See note on the analog selectors on page 39 |
| Signal | $\begin{aligned} & 0 \text { to } 10 \mathrm{~V} \\ & 2 \text { to } 10 \mathrm{~V} \\ & 0 \text { to } 20 \mathrm{~mA} \\ & 4 \text { to } 20 \mathrm{~mA} \end{aligned}$ | Physical output signal |
| Signal for range | 0 to 101 \% | Signal on going above/below range 101 = last output signal <br> If the output is a controller output, the controller switches over to manual mode and produces an output level that can be defined. <br> $\Rightarrow$ Chapter 7.2 "Controller" |

Factory settings are shown bold.

## 7 Configuration

Zero point
End value

Offset

|  | Logic outputs | output 1 (2 to 12) $\rightarrow$ |
| :---: | :---: | :---: |
|  | Value/selection | Description |
| Function | (Binary selector) Outp. 1 contr. 1 | Factory-set for logic output 2 to 12: Switched off |
| Output mode | none <br> Time delay <br> Pulse | Time delay: <br> The switch-on/switch-off edges can be delayed by a definable time period. <br> Pulse: <br> A definable pulse/pause ratio can be applied to the output. |
| ON time | -1999 to 0 to +9999 | Delay of switch-on edge or pulse time. |
| OFF time | -1999 to 0 to +9999 | Delay of switch-off edge or pause time. |

Factory settings are shown bold.

## 7 Configuration

### 7.6 Logic functions

## Configuration

Analog inputs
Controller
Generator
Limit comparators
Outputs
Logic functions
Math / Logic
C-level
Display
Interfaces
Device data
Recording
Timers

## Switching action

Functions are assigned here to the logic signals of the logic inputs, limit comparators and logic functions (formula).

In addition, the functions for control contacts, tolerance band signal and program end signal are defined for program controllers/generators.
In the case of the fixed-setpoint controller, the ramp end signals can have functions assigned.


The functions are arranged in two groups:
Edge-triggered The logic function reacts to switch-on edges.
functions
The following functions are edge-triggered:

- Start/stop of self-optimization
- Acknowledgement of limit comparators
- Program start/cancel
- Start timer
- Synchronize clock
- Remote alert
- Segment change

State-triggered The logic function reacts to switch-on or switch-off states. functions

- All remaining functions


## 7 Configuration

## Combined logic functions

The functions are implemented through the combination of up to four control variables.

Any control variable can be selected. The states Z1 to Z4 are assigned to the control variables in descending order of the control variables (see list on the right).

| Control variable | State |
| :---: | :---: |
| Logic input 1 |  |
| $\cdots$ |  |
| Logic input 6 |  |
| Limit comparator 1 |  |
| ... |  |
| Limit comparator 16 | Z1 |
| Logic 1 | Z2 |
|  | Z3 |
| Logic 16 | Z4 |
| Control contact 1* |  |
| $\cdots$ |  |
| Control contact 16* |  |
| Tolerance band signal* |  |
| Program end signal* |  |
| Ramp end signal |  |

## Example:

The process value is to be selected via a logic input and the state of one limit comparator.

This results in the following assignment:
Z1-logic input 1
Z2 - limit comparator 1


## Setpoint/process value switching

| Setpoint | Process value | Z2 | Z1 |
| :--- | :--- | :---: | :---: |
| Setpoint 1 <br> Setpoint of system status <br> External setpoint | Configured controller process value <br> of controller channel | 0 | 0 |
| Setpoint 2 | Analog input 2 | 0 | 1 |
| Setpoint 3 | Analog input 3 | 1 | 0 |
| Setpoint 4 | Analog input 4 | 1 | 1 |

0 = contact open /OFF $\quad 1$ = contact closed /ON

[^2]
## 7 Configuration

## Program selection

| Program | Z6 | Z5 | Z4 | Z3 | Z2 | Z1 |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Program 1 | 0 | 0 | 0 | 0 | 0 | 0 |  |
| Program 2 | 0 | 0 | 0 | 0 | 0 | 1 |  |
| Program 3 | 0 | 0 | 0 | 0 | 1 | 0 |  |
| Program 4 | 0 | 0 | 0 | 0 | 1 | 1 |  |
| to |  |
| Program 64 |  | 1 | 1 | 1 | 1 | 1 | 1 |
| 0 contact open /OFF |  |  |  |  |  |  |  |

Multifunctional logic functions

Logic functions can cover several func- [00:50:01 09.001.01|Prog.Channel 3 ] tions simultaneously. The desired function can be marked by a cross in the selection list.

* Select/delete function with 짐
* Confirm with $\qquad$ Enter



## 7 Configuration

Selection of functions

Logic input 1 (2 to 6) $\rightarrow$
Limit comparator 1 (2 to 16)
Logic 1 (2 to 16) $\rightarrow$
Control contact 1 (2 to 16) $\rightarrow$
Tolerance band signal $\rightarrow$
Program end signal $\rightarrow$
Ramp end signal 1 (2 to 8) $\rightarrow$
Timer 1 (2 to 4)

| Value/selection | Description |
| :--- | :--- |
| Start Tune C1 | Start self-optimization for controller 1 |
| Cancel Tune C1 | Cancel self-optimization for controller 1 |
| Manual /Auto C1 | Changeover to manual mode for controller 1 |
| Inhibit Manual C1 | Inhibit manual mode for controller 1 |
| to | to |
| Start Tune C8 | Start self-optimization for controller 8 |
| Cancel Tune C8 | Cancel self-optimization for controller 8 |
| Manual /Auto C8 | Changeover to manual mode for controller 8 |
| Inhibit Manual C8 | Inhibit manual mode for controller 8 |
|  |  |
| Ramp stop C1 | Ramp stop for controller 1 |
| Cancel ramp C1 | Ramp OFF for controller 1 |
| Setpoint switching C1 | Setpoint switching for controller 1 |
| Proc. val. switching C1 | Process value switching for controller 1 |
| Paramset switching C1 | Parameter set switching for controller 1 (0=parameter set1) |
| to | to |
| Ramp stop C8 | Ramp stop for controller 8 |
| Cancel ramp C8 | Ramp OFF for controller 8 |
| Setpoint switching C8 | Setpoint switching for controller 8 |
| Proc. val. switching C8 | Process value switching for controller 8 |
| Paramset switching C8 | Parameter set switching for controller 8 (0=parameter set 1 |
|  |  |
| Key inhibit | Key inhibit |
| Level inhibit | Level inhibit |
| Text display | Text display |
| Display off | Screen OFF |
| Display changeover | Switch over screen templates |
| Acknowledgement LK | Acknowledgement of limit comparators |
| Prg.Auto/Man. switchP | Changeover between automatic and manual |
| Inhibit program start | Program cannot be started |
| Program startP | Program start |
| Program stop | Program stop |
| Program cancel | Program cancel |
| Program selectionP | Program selection (see below) |
| Fast forward | Dynamic speed increase of |
| Segment changeP | program sequence |
| Segment change |  |
| Factor settigs are sha |  |

Factory settings are shown bold.
$\mathrm{P}=$ parameter only available for program controller/generator

## 7 Configuration

| Display text | Standard text <br> Text 1 <br> to <br> Text 100 <br> No text | System texts according to function Definable texts (only via setup program) <br> No entry in event list |
| :---: | :---: | :---: |
| Delay | 0 to 9999sec | An info or an alarm is only activated with delay (see message types) |
| Message | No Yes | Defines whether an info is produced when the logic function is activated. The message disappears automatically when the logic signal changes. |
| Alarm | No <br> Yes | Defines whether an alarm message is produced when the logic function is activated. <br> Alarms must be acknowledged. <br> An entry is generated in the event list. |

Factory settings are shown bold.
$\mathrm{P}=$ parameter only available for program controller/generator

- To display the info immediately: just set info to "yes"
- To display the info after a delay: set info to "yes" and enter delay time
- To display the alarm immediately: just set alarm to "yes"
- To display the alarm after a delay: set alarm to "yes" and enter delay time
- To change the info to alarm after a delay time: set info and alarm to "yes" and enter delay time.


## Level inhibit

- No access via "Menu" key
- The setpoint can be modified in manual operation. No access to control contacts.
- Programs can be started and altered


## 7 Configuration

### 7.7 Math and logic module

## Configuration

Analog inputs
Controller
Generator
Limit comparators
Outputs
Logic functions
Math / Logic
C-level
Display
Interfaces
Device data
Recording
Timers

Function

Variable a
Variable b

Range start
Range end

Linearization

Special controller types (differential, ratio, humidity, C-level controller) or mathematical formulae and logical combinations are configured here.
C-level control and math/logic formulae (math and logic module) are extras.
The results of the calculations can be called up, under the variables "Math X" (math formulae) and "Logic X " (logic formulae) ( $\mathrm{X}=1$ to 16 ).

## Math / logic 1 (2 to 16) $\rightarrow$

| Value/selection | Description |
| :---: | :---: |
| no funct. <br> Differ. (a-b) <br> Ratio (a/b) <br> Humidity (a;b) <br> C-level <br> Math formula <br> Logic formula | No function Difference control (a-b) <br> Ratio control (a/b) <br> Humidity control (a;b) <br> C-level control <br> Math formula (only via setup program) <br> Logic formula (only via setup program) |
| (Analog selector) Switched off | Variable a |
| (Analog selector) Switched off | Variable b |
| -1999 to +9999 | Definition of a value range for the result of the mathematical calculation. If the value range is infringed, an out-of-range condition will be signaled. |
| $\Rightarrow$ Analog inputs <br> $\rightarrow$ Probe <br> Linear | The mathematical calculation can be combined with a (customer-specific) linearization table. |

Factory settings are shown bold.

## 7 Configuration

## Ratio control

## Humidity control

## Enabling the math and logic module

Control is always based on variable a.
The math module forms the ratio of the measurements of $a$ and $b(a / b)$ and produces the setpoint for the controller. The ratio is made available as a value, via the function "Math X ", and can be displayed.
The required ratio $a / b$ is programmed as the setpoint (ratio setpoint) in the setpoint definition.


$$
\begin{aligned}
& \text { E1 = analog input } 1 \text { (variable b) } \\
& \text { E2 = analog input } 2 \text { (variable a) } \\
& w=\text { setpoint } \\
& w v=\text { ratio setpoint } \\
& x=\text { process value } \\
& x w=\text { control deviation for controller }
\end{aligned}
$$

The humidity controller receives the process value from a psychrometric humidity probe, through the mathematical combination of wet bulb and dry bulb temperatures.

Variable a - dry temperature
Variable b-wet temperature

The math and logic module can be enabled through the code or the setup program.
$\Rightarrow$ Extras $\rightarrow$ Enable device options
$\Rightarrow$ Operating Manual 703590.6 (on-line documentation)

## 7 Configuration

### 7.8 C-level control

## Configuration

Analog inputs
Controller

## Generator

Limit comparators
Outputs
Logic functions
Math / Logic
C-level
Display
Interfaces
Device data
Recording
Timers

## C-level calculation

C-level control is used for the control of carbon in the atmosphere of a gas coking furnace. The C-level is determined through the oxygen measurement with a zirconium dioxide sensor and measurement of the sensor temperature.
C-level control is an extra.
Additionally, the math function has to be activated!

The calculations of the controller are based on the following:

$$
E=0.0992 \cdot T \cdot\left(-\lg \left(P_{c o}\right)+1.995+0.15 \cdot C_{p}+\lg \left(C_{p}\right)\right) \cdot m V / K+816.1 \mathrm{mV}
$$

E - e.m.f. of the zirconium dioxide sensor
T - sensor temperature in ${ }^{\circ} \mathrm{C}$
$P_{c o}$ - partial pressure CO in percentage of volume
$\mathrm{C}_{\mathrm{p}}$ - carbon level

## Sequence

 controlOperation using a zirconium dioxide sensor is subject to a fixed time schedule. The sensor has to be "flushed" at regular intervals (cycle time) to ensure faultfree measurement.
During flushing and the subsequent recovery time, the controller is in manual mode. The latest measurement is stored. The average value of the most recent outputs is produced.
During flushing, the output variable logic 1 is " 1 ". The flushing procedure can be controlled by linking it to an output.


## 7 Configuration



### 7.8.1 C-level control example

Analog input For C-level control, extra code C-level has to be activated and a special input card for zirconium dioxide sensor voltage has to be installed.

| Linearization | $*$ Select 0 to 10 V at the appropriate analog input |
| :--- | :--- |
|  | $*$ Set to linear (not C-level) |
| Set display ran- | $*-$ Set display start to 0 |
| ge | $*-$ Set display end to 2000 mV |
|  | $\Rightarrow$ "Display start" page 43 and "Display end" page 43 |

## Correct assignment

The number of the controller channel must be the same as the math/logif number and C-level number. Otherwise, the current C-level value cannot be calculated or the controller will not switch to manual mode during the flushing procedure.

Example: if controller 3 is used for C-level control, C-level 3 and math/ logic 3 have to be used for calculating the current C-level value. In this case logic 3 is the signal for sensor flushing procedure.

## 7 Configuration

### 7.9 Display

Configuration<br>Analog inputs<br>Controller<br>Generator<br>Limit comparators<br>Outputs<br>Logic functions<br>Math / Logic<br>C-level<br>Display<br>Interfaces<br>Device data<br>Recording<br>Timers

Contrast
Continuous operation from

## Continuous operation until

Screen saving

Time-out

Automatic channel changeover

Display after a reset

The time-dependent screen saving is defined here. In addition, time-out and the sequence of the different screen templates can be defined. The representations on the controller pictures 1 to 8 and on the collective picture can be adapted to suit individual requirements.

| Value/selection | Description |
| :--- | :--- |
| 0 to $\mathbf{2 5}$ to 31 | Contrast of color screen |
| hh:mm:ss <br> $\mathbf{0 0 : 0 0 : 0 0}$ | Switch-on time for screen |
| hh:mm:ss <br> $\mathbf{0 0 : 0 0 : 0 0}$ | Switch-off time for screen |
| $\mathbf{0}$ to 9999 min. | If no key is pressed for a specified time, the screen switches <br> off. The screen comes on automatically when a key is <br> pressed. <br> The function is not active during continuous operation. <br> $0=$ display is always switched on |
| 0 to 60to 9999 sec | The instrument automatically returns to the display of the <br> screen operating loop if no key is pressed for a specified <br> time. <br> $0=$ no time-out |
| $\mathbf{0}$ to 9999 sec | The screen templates of the operating loop are <br> automatically switched over after a selectable time. <br> $0=$ switched off |
| last picture <br> Controller pic. 1 <br> to <br> Controller pic. 8 <br> Collective pic. 1 <br> Collective pic. 2 <br> Recording <br> Custom pic. 1 <br> Custom pic. 2 | Last picture before power-off is shown <br> Controller channel 1 <br> to <br> Controller channel 8 <br> Controller 1 to 4 as a group picture <br> Controller 5 to 8 as a group picture <br> Recording (extra code) <br> freely configurable screen template 1 <br> freely configurable screen template 2 |

Factory settings are shown bold.

## 7 Configuration

|  | Value/selection | Description |
| :---: | :---: | :---: |
| Operating loop <br> $\rightarrow$ Controller pic. 1 to <br> $\rightarrow$ Controller pic. 8 <br> $\rightarrow$ Collective pic. 1 <br> $\rightarrow$ Collective pic 2 <br> $\rightarrow$ Recording <br> $\rightarrow$ Custom pic. 1 <br> $\rightarrow$ Custom pic. 2 | Yes <br> No | The screen templates that are to appear in the screen operating loop can be selected. <br> Visible as a factory setting: <br> - Controller pic. 1 <br> - Recording |

Factory settings are shown bold.
Controller pictures $\rightarrow$ Controller picture 1 (2 to 8) $\rightarrow$

Analog value 1
$\rightarrow$ Display
$\rightarrow$ Decimal place
Analog value 2
$\rightarrow$ Display
$\rightarrow$ Decimal place
Analog value 3
$\rightarrow$ Display
$\rightarrow$ Decimal place
Logic value 1
to
Logic value 6
Program value $1^{P}$

Program value $2^{P}$


Factory settings are shown bold.
$P=$ parameter only available for program controller/generator

| Value column 1 | Collective picture $\rightarrow$ Controller 1 (2 to 8) $\rightarrow$ |  |
| :---: | :---: | :---: |
|  | Value/selection | Description |
|  | (Analog selector) Ramp end C1 | Display: |
| Decimal point column 1 | XXXX. | Coll. diag. 1 |
| Value column 2 | (Analog selector) Setpoint C1 | Controller 2-2 105 105 0 <br> Controller 3-3 80 80 0 |
| Decimal point column 2 | XXXX. |  |
| Value column 3 | (Analog selector) Output C1 | Column 1 Column 2 Column 3 |
| Decimal point column 3 | XXXX | Collective pic. 2: Controller 5 to 8 |

Factory settings are shown bold.

Decimal point If the value that is be displayed can no longer be represented with the programmed decimal point, then the number of decimal places will be automatically reduced. If, subsequently, the measured value decreases, the number increases to the programmed value of the decimal point.

## 7 Configuration

### 7.10 Interfaces

## Configuration

Analog inputs
Controller
Generator
Limit comparators
Outputs
Logic functions
Math / Logic
C-level
Display
Interfaces
Device data
Recording
Timers

| Protocol | MODBUS $\rightarrow$ |  |
| :---: | :---: | :---: |
|  | Value/selection | Description |
|  | MODBUS MODBUS int. | Modbus integer: <br> All values are transferred in the integer format |
| Baud rate | $\begin{aligned} & 9600 \\ & 19200 \\ & 38400 \end{aligned}$ | If two interfaces are operated at the same time, then the baud rate 38400 for one individual interface is not permissible. |
| Data format | $\begin{aligned} & \hline \text { 8-1-none } \\ & \text { 8-1-odd } \\ & \text { 8-1-even } \\ & \text { 8-2-none } \end{aligned}$ | (data bits)-(stop bits)-(parity) |
| Device address | 0 to 1 to 255 | Address in data network |
| Minimum response time | 0 to 500 msec | Minimum time that elapses between the request of a device in the data network and the response of the controller. |

Factory settings are shown bold.

## PROFIBUS DP $\rightarrow$

Device address

The interface parameters for the standard RS422/485 interface (MODbus 1) and an optional RS422/485 (MODbus 2) or PROFIBUS-DP interface have to be configured in order to communicate with PCs, bus systems and peripheral devices.

## MODBUS $\rightarrow$

| Value/selection | Description |
| :--- | :--- |
| 0 to $\mathbf{1}$ to 255 | Address in data network |

Factory settings are shown bold.

### 7.11 Device data

## Configuration

Analog inputs
Controller
Generator
Limit comparators
Outputs
Logic functions
Math / Logic
C-level
Display
Interfaces
Device data
Recording
Timers

Basic settings such as supply frequency or temperature unit are made here.

| Device designation Supply frequency | Value/selection | Description |
| :---: | :---: | :---: |
|  | (16-character text) | any text |
|  | $\begin{aligned} & 50 \mathrm{~Hz} \\ & 60 \mathrm{~Hz} \end{aligned}$ | Country-specific supply frequency of supply voltage |
| Temperature unit | $\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{F} \end{aligned}$ | Unit for temperature values |
| Program selection <br> Sampling time | Icon Text list | A program can be selected in the program start menu, either graphically via icons, or via a text list. |
|  | $\begin{aligned} & 50 \mathrm{msec} \\ & 150 \mathrm{msec} \\ & \mathbf{2 5 0} \mathrm{msec} \end{aligned}$ | Required basic sampling time <br> The sampling time possible depends on the number of active controller channels and the utilization of the math and logic module. <br> The actual sampling time is shown under "System sampling time". |
| System sampling time | (Time display) | Actual sampling time of device |
| Date and time <br> Date <br> Time <br> Summer time <br> Changeover | dd.mm.yy hh:mm:ss | Real-time clock with calendar d=day; m=month; y=year $h=$ hours; $m=$ minutes; $s=s e c o n d s$ |
|  | Switched off Time definition Automatic | Determines how to change over to summer time. <br> Details for the changeover through time definition |
| Start date Start time End date End time | dd.mm.yy <br> hh:mm:ss <br> dd.mm.yy <br> hh:mm:ss |  |

Factory settings are shown bold.

## 7 Configuration

### 7.12 Recording

## Configuration

Analog inputs
Controller
Generator
Limit comparators
Outputs
Logic functions
Math / Logic
C-level
Display
Interfaces
Device data
Recording
Timers
Function
Scaling start
Scaling end
Decimal place
Unit

Unit

The recording function permits the visualization of up to four analog and three logic signals. The signal sources are defined here.

The ring memory contains a total of 43200 measurement points. The maximum recording time depends on the storage rate that was set and the number of measurement signals. Using the setup program, the maximum recording time can be calculated and indicated.
A special software (accessory) is available for reading out the historical data.

## Analog value 1 (2 to 4) $\rightarrow$

| Value/selection | Description |
| :--- | :--- |
| (Analog selector) <br> Switched off | Recording of analog signals |
| -1999 to $\mathbf{0}$ to +9999 | Defines the lower and upper limit on the y-axis. <br> The screen template "Recording" (operating loop) can be <br> used to switch between the scalings of the analog values <br> for the graphical display of the traces. |
| -1999 to $\mathbf{1 0 0}$ to +9999 |  |
| XXX.X | Any 4-character sequence can be specified. |
| (4-character text) <br> $\%$ | 4- |

Factory settings are shown bold.

| Value/selection | Description |
| :--- | :--- |
| (Binary selector) <br> Switched off | Recording of logic signals |
| 1 to 6 to 60 sec | Defines the time span between the measurement points. <br> The ring memory will be overwritten after 43200 <br> measurement points. |

Factory settings are shown bold.

### 7.13 Timers

## Configuration

Analog inputs

## Controller

## Generator

Limit comparators
Outputs
Logic functions
Math / Logic
C-level
Display
Interfaces
Device data
Recording
Timers


Example

Timers are used for time-dependent control. The timer signal (timer 1 to 4) indicates whether the timer is active. The signal can be output via the logic outputs or processed internally.
It is possible to program up to four timers.
The timers are started and canceled through the logic functions.

## Timer 1 (2 to 4) $\rightarrow$

| Value/selection | Description |
| :--- | :--- |
| no function |  |
| Signal active | with the timer running: logic signal=1; <br> canceled after power-down <br> with the timer running: logic signal=0; <br> canceled after power-down <br> with the timer running: logic signal=1; <br> continues after power -down <br> with the timer running: logic signal=0; <br> continues after power down |
| active, continue |  |
| inactive, continue | Time setting |
| hh:mm:ss <br> $00: 00: 00$ |  |

Factory settings are shown bold.

You need to switch from setpoint 1 over to setpoint 2 for a defined time period.
Start the timer via logic input 1.

* Set the two setpoints at the operating level
* Set the timer and the timer value

Timer $\rightarrow$ Timer $1 \rightarrow$ Function $\rightarrow$ Signal active

* Configure the logic input

Logic functions $\rightarrow$ Logic input $1 \rightarrow$ Select functions $\rightarrow$ Start timer 1

* Configure the setpoint changeover

Logic functions $\rightarrow$ Timer $1 \rightarrow$ Select functions $\rightarrow$ Setpoint changeover C1

## 7 Configuration

## 8 Optimization

### 8.1 Self-optimization

## Oscillation method

Step response method

Self-optimization SO establishes the optimum controller parameters for PID or PI controllers.

Depending on the controller type, the following controller parameters can be defined:
Reset time (Tn), derivative time (Tv), proportional band (Xp), cycle time (Cy), filter time constant (dF)
The controller selects one of two procedures ( $\mathbf{a}$ or $\mathbf{b}$ ), depending on the size of the control deviation:
a) SO in start-up phase

b) SO at setpoint


This type of optimization involves determining the control parameters through an output step that is applied to the process. First a steady output is produced until the process value is "steady" (constant). Afterwards, an output step (step size), which can be defined by the user, is automatically applied to the process. The resulting response of the process value is used to calculate the control parameters.

Self-optimization establishes the optimum control parameters for PID or PI controllers, in accordance with the selected control structure.

Depending on the controller type, the following control parameters can be defined:
Reset time (Tn), derivative time (Tv), proportional band (Xp), cycle time (Cy), filter time constant (dF)

Optimization can be started from any system status and can be repeated as often as is required.
The controller outputs (analog, relay, solid-state), the steady output and the step size (min. 10\%) have to be defined.
Principal applications of the step response method:

- Optimization instantly after "power on", during the start-up phase Considerable time savings, setting: steady output = $0 \%$.
- The process does not readily permit oscillations (e.g. highly insulated furnaces with small losses, long oscillation period)
- Process value must not exceed setpoint If the output (with stabilized setpoint) is known, an overshoot can be avoided through the following adjustment: steady output + step size <= output in stabilized condition


## 8 Optimization

With output type "solid-state", the cycle time during optimization is reduced to $8 x$ the sampling time.
With the "relay" output type, care has to be taken that the process value is not influenced by the switching cycle time, since otherwise optimization cannot be completed successfully.
Solution: Reduce the cycle time Cy , until the process value is no longer influenced. (Manual mode can be used for the adjustment!)

Start of self-optimization after power-on and during the start-up phase


## 8 Optimization

Start of self-optimization during operation


## Starting selfoptimization

## Start at the operating level

* Select the controller channel in $\rightarrow$ Operating level $\rightarrow$ Self-optimization $\rightarrow$ Controller number 1 to8
* Start self-optimization for the selected controller channel with $\rightarrow$ Status $\rightarrow$ "Active"


## Start from the operating loop

* Change the screen template for the required controller channel with
(press repeatedly, if necessary!)
* Press Details
* Press mmon
* Start self-optimization for the required controller channel with $\qquad$ [7]
* Pressing resets the significance of the softkeys

The controller outputs types have to be defined for self-optimization. They also have to be enabled for the corresponding controller channel for self-optimization to start.
$\Rightarrow$ Chapter 7.2 "Controller"
In the case of a program controller, self-optimization can only be started in the manual controller mode, during a program pause or in the basic status (with active controller!).

## 8 Optimization

Canceling selfoptimization

* Switch the "Status" parameter at the operating level to "inactive" or press [7] again


### 8.2 Check of the optimization

The optimum adaptation of the controller to the process can be checked by recording the start-up phase with the control loop closed. The diagrams below indicate possible maladjustments and how these can be corrected.

The control response of a third-order control loop of a PID controller is shown as an example. However, the procedure for adjusting the controller parameters can also be applied to other control loops.







## 9 Retrofitting of modules

The following steps are necessary for retrofitting modules:

## Safety notes



Only qualified personnel are permitted to retrofit modules.

For safety reasons, care must be taken that the back panel and the fixing screws are correctly reassembled and mounted after the alterations.


The modules can be damaged by electrostatic discharge. Avoid electrostatic charge during fitting and removal. Carry out retrofitting on a workbench that is earthed.

## Identifying the module

## * Identify the module by the Sales. No. affixed to the packaging

| Modules | Code | Part no. | Board No. |
| :--- | :--- | :--- | :--- |
| Universal input $^{\mathrm{a}}$ <br> Input $^{\mathrm{a}}$ for zirconium dioxide sensor 0 to 2 V |  | 00489149 | 00483500 |
| Outputs: |  |  | 00483395 |
| 1 relay (changeover contact) | 1 | 00399782 | 00401153 |
| Solid-state relay 230 V/1 A | 2 | 00399783 | 00401185 |
| 2 relays (n.o.) make | 3 | 00399784 | 00397011 |
| 1 logic output 0/22 Vb | 4 | 00399785 | 00401267 |
| 1 analog output | 5 | 00399786 | 00403601 |
| 1 supply for | 6 | 00399785 | 00401267 |
| two-wire transmitter |  |  |  |
| 2 logic outputs 0/14 V | 7 | 00399788 | 00621622 |
| RS422/485 interface | 54 | 00399789 | 00401269 |
| PROFIBUS-DP | 64 | 00399790 | 00401264 |

[^3]
## 9 Retrofitting of modules

Removing the back panel from the housing

* Pull off the pluggable connector
* Loosen screws (do not remove (1) and (2)!')

* Fold back panel upwards and take it off

Slot assignment
The slots for the individual modules are printed on the back panel of the housing:

| Slot | Module | Function |
| :--- | :--- | :--- |
| IN 1 <br> to <br> IN 8 | Universal input | Analog input 1 <br> to <br> Analog input 4 |
| OUT 1 <br> to <br> OUT 6 | Outputs | Output 1+7 <br> to <br> Output 6+12a |
| COM 2 | RS422/485 <br> PROFIBUS DP | Interface 2 |

[^4]
## 9 Retrofitting of modules

Retrofitting of modules

* Remove dummy module or existing module by using a screwdriver, for example

* Push module into the vacant slot until the pluggable connector snaps into place

* Hook the back panel into the slots provided on the top edge and close it.
* Tighten the screws

Mount screws correctly with shake-proof washers, since they ensure the protective earth (PE) function (tightening torque: $100-120 \mathrm{Ncm}$ ).

9 Retrofitting of modules

### 10.1 Technical data

## Thermocouple input

| Designation |  | Measurement range | Meas. accuracy ${ }^{\text {a }}$ | Ambient temperature error |
| :---: | :---: | :---: | :---: | :---: |
| Fe-Con L |  | -200 to $+900{ }^{\circ} \mathrm{C}$ | $\leq 0.25$ \% | $100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ |
| Fe-Con J | EN 60584 | -200 to $+1200^{\circ} \mathrm{C}$ | $\leq 0.25$ \% | $100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ |
| Fe-Con U |  | -200 to $+600{ }^{\circ} \mathrm{C}$ | $\leq 0.25$ \% | $100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ |
| Cu-Con T | EN 60584 | -200 to $+400{ }^{\circ} \mathrm{C}$ | $\leq 0.25$ \% | $100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ |
| NiCr-Ni K | EN 60584 | -200 to $+1372{ }^{\circ} \mathrm{C}$ | $\leq 0.25$ \% | $100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ |
| NiCr-Con E | EN 60584 | -200 to $+915^{\circ} \mathrm{C}$ | $\leq 0.25$ \% | $100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ |
| NiCrSi-NiSi N | EN 60584 | -100 to $+1300^{\circ} \mathrm{C}$ | $\leq 0.25$ \% | $100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ |
| Pt10Rh-Pt S | EN 60584 | 0 to $1768{ }^{\circ} \mathrm{C}$ | $\leq 0.25$ \% | $100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ |
| Pt13Rh-Pt R | EN 60584 | 0 to $1768{ }^{\circ} \mathrm{C}$ | $\leq 0.25$ \% | $100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ |
| Pt30Rh-Pt6Rh B | EN 60584 | 0 to $1820{ }^{\circ} \mathrm{C}$ | $\leq 0.25 \%^{\text {b }}$ | $100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ |
| W5Re-W26Re C |  | 0 to $2320{ }^{\circ} \mathrm{C}$ | $\leq 0.25$ \% | $100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ |
| W3Re-W25Re D |  | 0 to $2495{ }^{\circ} \mathrm{C}$ | $\leq 0.25$ \% | $100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ |
| W3Re-W26Re |  | 0 to $2400{ }^{\circ} \mathrm{C}$ | $\leq 0.25$ \% | $100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ |
| Cold junction |  | Pt100 internal, external, or constant |  |  |

a With 250 msec sampling time
b Within range 300 to $1820^{\circ} \mathrm{C}$

## Input for resistance thermometer

| Designation | Connection circuit | Measurement range | Meas. accuracy ${ }^{\text {a }}$ | Ambient temperature error |
| :---: | :---: | :---: | :---: | :---: |
| Pt100 EN 60751 | Two-wire/three-wire | -200 to $+850{ }^{\circ} \mathrm{C}$ | $\leq 0.05$ \% | $50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ |
| Pt50, 500, 1000 EN 60751 | Three-wire | -200 to $+850{ }^{\circ} \mathrm{C}$ | $\leq 0.1$ \% | $50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ |
| Cu50 | Three-wire | -50 to $+200{ }^{\circ} \mathrm{C}$ | $\leq 0.1$ \% | $50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ |
| Ni100 DIN 43760 | Two-wire/three-wire | -60 to $+250{ }^{\circ} \mathrm{C}$ | $\leq 0.05$ \% | $50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ |
| KTY11-6 | Three-wire | -50 to $+150{ }^{\circ} \mathrm{C}$ | $\leq 1.0$ \% | $50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ |
| PtK9 | Three-wire | lithium-chloride transducer |  |  |
| Sensor lead resistance | max. $30 \Omega$ per lead for 2-wire or 3-wire circuit |  |  |  |
| Meas. current | $250 \mu \mathrm{~A}$ |  |  |  |
| Lead compensation | Is not required for a three-wire circuit. With a two-wire circuit, the lead resistance can be compensated in software by a correction of the process value. |  |  |  |

a With 250 msec sampling time

## Input for standard signals

| Designation | Measurement range | Meas. accuracy ${ }^{\text {a }}$ | Ambient temperature error |
| :---: | :---: | :---: | :---: |
| Voltage | ```0 to 10 V -10 to +10 V -1 to +1 V 0 to +1 V 0 to 100 mV -100 to +100 mV Input resistance \(\mathrm{R}_{\mathrm{IN}}>100 \mathrm{k} \Omega\)``` | $\begin{aligned} & \leq 0.2 \% \\ & \leq 0.2 \% \\ & \leq 0.1 \% \end{aligned}$ | $\begin{aligned} & 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ & 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \end{aligned}$ |
| C-level | 0 to 2 V Input resistance $\mathrm{R}_{\text {IN }}>7.5 \mathrm{M} \Omega$ | $\leq 0.1$ \% | $100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ |
| Current | 4 to 20 mA , voltage drop $\leq 1 \mathrm{~V}$ 0 to 20 mA , voltage drop $\leq 1 \mathrm{~V}$ (max. current load $=50 \mathrm{~mA}$ ) | $\begin{aligned} & \leq 0.1 \% \\ & \leq 0.1 \% \end{aligned}$ | $\begin{aligned} & 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ & 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \end{aligned}$ |
| Heater current | AC 0 to 50 mA | $\leq 1 \%$ | $100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ |
| Potentiometer | $\min .100 \Omega$, max. $4 \mathrm{k} \Omega$ |  |  |

a With 250 msec sampling time
Standard version

## 10 Appendix

## Logic inputs

## Floating contacts

## Measurement circuit monitoring

In the event of a fault, the outputs move to a defined (configurable) status.

| Sensor | Overrange / <br> underrange | Probe or lead short-circuit | Probe or lead break |
| :--- | :---: | :---: | :---: |
| Thermocouple | $\bullet$ | - | $\bullet$ |
| Resistance thermometer | $\bullet$ | $\bullet$ | $\bullet$ |
| Voltage 2 to 10V | $\bullet$ | $\bullet$ | $\bullet$ |
|  | 0 to 10V | $\bullet$ | - |
| Current | 4 to 20 mA |  |  |
|  | 0 to 20 mA | $\bullet$ | $\bullet$ |

- = recognized - = not recognized


## Outputs



## Controller

\(\left.$$
\begin{array}{|l|c|}\hline \text { Controller type } & \begin{array}{c}\text { two-state controller, } \\
\end{array}
$$ <br>
\hline three-state controller, modulating controller, continuous controller, <br>

continuous controller with integrated actuator driver\end{array}\right]\) P/PD/PI/PID/I | Controller structures | dynamic resolution up to 16 bit |
| :--- | :---: |
| Sampling time | 250 msec |
|  | $50 \mathrm{msec}, 150 \mathrm{msec}, 250 \mathrm{msec}$ (configurable) |

## Color screen

| Resolution | $320 \times 240$ pixels |
| :--- | :---: |
| Size (screen diagonal) | $5 "(12.7 \mathrm{~cm})$ |
| Type | TFT screen with LED backlighting |
| No. of colors | 27 colors |

Electrical data

| Supply voltage (switchmode PSU) | AC 110 to $240 \mathrm{~V}+10 /-15 \% 48$ to 63 Hz |
| :---: | :---: |
|  | AC/DC 20 to 30 V 48 to 63 Hz (only for operation in SELV or PELV current circuits) |
| Electrical safety | to EN 61010, Part 1 overvoltage category III, pollution degree 2 |
| Power consumption | max. 30 VA |
| Data backup | flash memory |
| Data buffering | battery (restart data/start conditions of program controller/clock time) |
| Electrical connection | at rear, via plug-in screw terminals conductor cross-section max. $2.5 \mathrm{~mm}^{2}$ with core ferrules (length: 10 mm ) |
| Electromagnetic compatibility interference emission interference immunity | EN 61326 <br> Class A - only for industrial use to industrial requirements |

Housing

| Housing type | housing and back panel: metal <br> for mounting in control panels/switchgear cabinets (indoor use) to IEC 61554 |
| :--- | :---: |
| Front bezel | plastic to UL $94 \mathrm{VO}, 144 \mathrm{~mm} \times 130 \mathrm{~mm}$ |
| Mounting depth | 170 mm |
| Panel cut-out | $92^{+0.8} \times 92^{+0.8} \mathrm{~mm}$ |
| Ambient/storage temperature range | -5 to $500^{\circ} \mathrm{C} /-40$ to $+70^{\circ} \mathrm{C}$ |
| Climatic conditions | rel. humidity $\leq 75 \%$ annual mean, no condensation |
| Site altitude | up to 2000 m above sea level |
| Operating position | horizontal |
| Enclosure protection | to EN 60529 |
| Weight (fully fitted) | front IP65/rear IP20 |
| Membrane keypad | approx. 1400 g |

## Interface (COM 1)

| Interface type | PC interface or RS422/485 |
| :--- | :---: |
| Protocol | Modbus |
| Baud rate | $9600,19200,38400$ |
| Device address | 1 to 255 |
| Minimum response time | 0 to 500 msec |

## Interface (COM 2)

Modbus

| Interface type | RS422/485 |
| :--- | :---: |
| Protocol | Modbus |
| Baud rate | $9600.19200,38400$ |
| Device address | 1 to 254 |
| Minimum response time | 0 to 500 msec |
| Profibus |  |
| Device address | 1 to 128 |

Approvals/marks of conformity

| Mark of <br> conformity | Testing <br> laboratory | Certificates / <br> certification numbers | Test basis | valid for |
| :--- | :--- | :--- | :--- | :--- |
| c UL us | Underwriters <br> Laboratories | E201387 | UL 61010-1 <br> UL 50-Type 1 <br> CAN/CSA-C22.2 No. 61010-1 |  |

10 Appendix

## A

Access code 35, 37
Accessories 8
Acknowledgement 54
Action 54
Actuator time 35
Alarm 62
Alteration
of the segment time for the current segment 33
of the setpoint during the current segment 33
of the setpoint for the next segment 33
Analog input 41
Analog value 72-73

## B

Basic status 32
Baud rate 70

## C

Cascade controller 47
Channel changeover automatic 67
C-level control 65
Clock time 71
Close mounting 11
CO content 66
CO measurement 66
Cold-junction temperature
constant 43
external 43
Configuration level 21
Connection diagram 15
Contact spacing 35
Continuous operation 67
Contrast 67
Control action 46
Controller 46
Controller parameters 35
Controller structure 35
Controller type 46
Correction value 66

## D

## Date 71

Dead band 47
Decimal place
shifting 22
Decimal point
shifting 22
Derivative time 35
Details 20
Device address 70
Device designation 71

Dimensions 11
Display 67
Display end 43

## E

End value
for analog signals 57
Event list 21
External relay module 8

## F

Filter 43
Fitting 12
Front panel, cleaning 12
Function
generator 49
logic function 61
ramp function 50

## H

Heater current monitoring 43
History 24
Hold 29
Humidity control 64

Info 62
Inputs 41
Installation notes 13
Interface 70

## L

Level inhibit 62
Limit comparator 53
absolute 55
relative 55
Limit comparator functions 53
Limit value 54
Linearization 42, 63
Logic functions 58
combined 59

## M

Manual mode 26, 32, 46
Manual output 46
Math and logic module 63
Measurement correction 42
Menu 21
Message types 62
Method

## 11 Index

self-optimization 48
Module
identification 79
retrofitting 79

## 0

OFF time 57
ON time 57
Operating level 21
Operation, overview of 19
Optimization 78
Output 56
self-optimization 48
Output level
alteration 26
Output level start 47

## P

Parameter level 21, 35
Password 35, 37
Power failure, response to 51
Probe 41
Program
start 30
Program editor 27, 29
Program selection 60
Program setpoint 47
Program start 50
Protocol 70
Pulse time 54

## R

Ramp slope 50
Range end 43, 63
Range output level 46
Range start 43, 63
Ratio control 64
Recalibration 44
customized 43
Recording 24, 72
Relay ON time
minimum 35
Reset time 35
Response time
minimum 70

## S

Sampling time 71
Screen operating loop 20, 68
Screen saving 67
Selectors 37
Self-optimization 48, 75
Sensor temperature 66
Setpoint
alteration 25
external 47
Setpoint input 23
Setpoint limits 47
Setup program 8
Start-up 2
Steady output 48
Step response method 75
Step size 48
Switching differential 35, 54
Switch-on delay 54
Symbols 18

## T

Technical data 83
Temporary alterations 33
Time input 22
Time-out 19, 67
Tolerance band 29
Type designation 7

## U

User level 21

## V

Value input 22
Variable a 63
Variable b 63

## W

Warranty 2
Working point 35

## Z

Zero point with analog signals 57

JUMO GmbH \& Co. KG
Street address:
Moritz-Juchheim-Straße 1 36039 Fulda, Germany Delivery address:
Mackenrodtstraße 14 36039 Fulda, Germany Postal address: 36035 Fulda, Germany Phone: +49 661 6003-0 Fax: $\quad+49661$ 6003-607 Email: mail@jumo.net Internet: www.jumo.net

JUMO Instrument Co. Ltd.
JUMO House
Temple Bank, Riverway
Harlow, Essex, CM20 2DY, UK
Phone: +44 1279635533
Fax: $\quad+441279625029$
Email: sales@jumo.co.uk
Internet: www.jumo.co.uk

JUMO Process Control, Inc.
6733 Myers Road
East Syracuse, NY 13057, USA
Phone: +1 3154375866
Fax: $\quad+13154375860$
Email: info.us@jumo.net Internet: www.jumousa.com


[^0]:    Standard version

[^1]:    * Delete marked segment with Delete

[^2]:    雨
    If switching between two setpoints or process values only is required, only one logic function has to be configured.

    If more than two logic functions are configured to setpoint switching (process value switching), only the first two (see list "Control variable - State") are significant.

[^3]:    ${ }^{\text {a }}$ The instrument is fitted from device software version 162.04 .01 on with a new type of analog input card. If analog input cards are retrofitted, it must be noted that they cannot be operated together with the older type of card (i.e. do not mix card types).
    Please note also that an update of the setup program may be required in order to carry out the configuration through the setup program.
    The device software version (version number) can be read out from the instrument in the "Device info" menu.
    The nameplate can also be used to determine whether the new analog input modules have been fitted to the instrument (see Chapter 2.3 "Nameplate").
    b The boards for the $0 / 22 \mathrm{~V}$ logic output and the supply for a two-wire transmitter are identical, and are detected by the instrument and the setup program as "Logic output $0 / 22 \mathrm{~V}$ ".

[^4]:    a Number of output, if two outputs are available on the board

