ÉTUDES ET RÉALISATIONS

 ÉLECTRONIQUES / INSTRUMENTATIONS / AUTOMATISMERoute de Brindas - Parc d'activités Arbora №2 69510 - Soucieu en Jarrest

Tél. 0472313130 - Fax 0472313131
Tel. Intern. 33472313130 - Fax Intern. 33472313131

TWO-COLOUR DIGITAL PANEL METERS

Programmable, ± 10000 points DGN175 U / T / M

User manual
Valid for instruments with version 01.xx

SUMMARY

1. INTRODUCTION p2
2. DIMENSIONS p5
3. CONNECTINGS p6
4. PROGRAMMING p7
4.1-Communication with the appliance p7
4.2 - Orientation through the programming p7
4.3 - Main menu p8
4.4 - Programming menu p9
4.4.1 - Programming of the input p9
a / Process signals p9
b / Temperature signals p10
c / Resistive sensors p10
4.4.2 - Programming of the display factor p11
4.4.3 - Programming of the advanced functions p12
4.4.4 - Programming of the analogue output p13
4.4.5 - Programming of the relay outputs p14
4.4.6 - Programming of the RS485 output p16
4.4.7 - Programming of the logic inputs p16
4.4.8 - Programming of the safeties p17
4.4.9 - Programming of the brightness and the leds p18
4.4.10 - Menu save p19
4.5 Programming of the access code p19
4.6 Menu simulation p20
4.7 Menu direct functions p20
4.8 Setting of the keyboard sensitiveness p20
4.9 Menu ABOUT (information about the product) p21
5. DIRECT FUNCTIONS p22
5.1 Zero reset of the Min / Max. values p22
5.2 Display of the direct input measure p22
5.3 Zero reset of the alarm recordings p22
5.4 Quick programming of the alarm setpoints p22
5.5 Menu adjustment (display calibration) p23
5.6 Menu Tare p24
5.7 Setting of the brightness of the displays p24
6. ERROR MESSAGES p25
7. GENERAL WARRANTY TERMS p25
8. ANNEXE: MODBUS p26

1. INTRODUCTION

The series DGN175 offers a complete range of highly accurate programmable digital panel meters. Each appliance is equipped on front face with a two-colour 4 digits 14 mm high display, with a brightness which integrates perfectly in applications in industrial control rooms. They allow the display, the control and the transmission of data from any measurable magnitudes.

- The DGN175 U (process inputs) includes as standard:

A bidirectional DC current or voltage input: $\pm 20 \mathrm{~mA}, \pm 100 \mathrm{mV}, \pm 1 \mathrm{~V}, \pm 10 \mathrm{~V}, \pm 150 \mathrm{~V}, \pm 300 \mathrm{~V}$.

- Measurable scale overrange from -10% to $+10 \%$
- Scale factor programmable
- Enlarging effect
- Extraction of the square root
- Special linearisation in 20 points
- Supply for 2 or 3 -wire sensor
- The DGN175 T (temperature input) includes as standard:

A thermocouple input:

(J, K, B, R, S, T, E, N, L, W/G, W3/D, W5/C)
A sensor input: Pt 100Ω, Ni 100Ω

- Wiring in 2,3 or 4 wire.

2-wire $\Delta \mathrm{Pt} 100$ measurement

- The DGN175 M (universal input) includes as standard:

The inputs of the DGN175 U and T plus:
A resistive sensor input: Calibers $0-400 \Omega$ and $0-10 \mathrm{k} \Omega$
A potentiometer input: from 100Ω to $10 \mathrm{k} \Omega$

AVAILABLE OPTIONS: (to be specified on the order)

Isolated analogue output: A

Active current output: A1
Passive current output: A2
Voltage output: A3
Scale ratio programmable with enlarging effect.

Relay outputs: R or R4

2 or 4 relays: mode setpoint or window.
Recording of the alarms.
Time delay and hysteresis adjustable on each setpoint.
Alarm messages.

Isolated digital output: N

RS 485 2-wire, protocol MODBUS-JBUS.

Logic input (signal 24 VDC): T

2 isolated logic inputs à with programmable functions:
Display hold.
Moving of the decimal point.
Tare function.
Min. Max. zero reset.

Bargraph (16 leds display): B

Allow a quick evaluation of the measured value variations.
Scale factor programmable.

Programming

- With the keyboard
- With the configuration software SlimSET

To communicate with the DGN175 you will need a connection cable C1- μ USB (USB type A male to μ USB type B male.
To connect this cable to the DGN175 insert the μ USB contact into the provided female connector (on the side of the appliance). Then connect the USB cable to a PC.
The software SlimSET allows the reading of the measures or the modification of the digital panel meter configuration.
Each configuration is kept as a file stored on disk.
These files can be consulted, modified, duplicated or loaded into the digtal panel meters.
The files can be created with or without having a digital panel meter connected.
All files can be edited on any type of printer.

CODING:

The outputs can be combined except for the configuration: AR4NT

Features of the inputs

(1) Sensor break detection mA input (if down scale $\geq 3,5 \mathrm{~mA}$ Other inputs: a $12 \mu \mathrm{~A}$ pulsed current allows the detection of line or sensor break
(2) Wiring in 2, 3 or 4 wire possible.

The influence of the line resistance $(0<\mathrm{Rl}<25 \Omega)$ is included in the announced intrinsic error (wiring in 3 or 4 wire).
3) Efficiency of the CJC $\left(-20^{\circ} \mathrm{C}\right.$ to $\left.60^{\circ} \mathrm{C}\right)$ Internal CJC: $\pm 1^{\circ} \mathrm{C} \pm 0.03^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{C}$

MR: Measure Range

Features of the outputs

Types of OUTPUTS		Features
Isolated analogue output	Current	Current: Direct or reversed 0-20mA Load impedance $\leq R c 600 \Omega$
	Votage	Voltage: Direct or reversed 0-10V LLoad impedance $\geq R c 5 k \Omega$
2 or 4 change-over relays		2 setpoint per relay, configurable on the whole MR. Hysteresis programmable Time delay programmable from 0 to 999.9 sec . 8A/250 VAC on resistive load
Isolated digital comms RS485		Protocol MODBUS/JBUS (EIA RS485)

General features

Galvanic isolation:

$3 \mathrm{kV}-50 \mathrm{~Hz}-1$ min between supply, inputs, analogue output, relay outputs, RS485 output and logic input. 1.5 Kv between analogue output and RS485.

Power supply:

Max. operating range	Consumption
20 to 250 VAC - $50 / 60 \mathrm{~Hz}$ and	3 W max.
20 to 250 VDC	6 VA max.

Average response time: 150 ms (for a variation of the input signal from 10 to 90%).

Measure:

- Standard sampling time: 100 ms
- Common mode rejection rate: 130 dB
- Serial mode rejection rate: $50 \mathrm{~dB} 50 / 60 \mathrm{~Hz}$
- Zero drift compensation

Use:

- Operating temperature: -20 to $60^{\circ} \mathrm{C}$
- Storage temperature: -20 to $70^{\circ} \mathrm{C}$
- Use in pollution degree 2 and voltage surge category II or better.
- Max. altitude: 2000 m .

Compliance with standards:

- Directive LV 2014/35/UE.. \qquad
- Directive EMC 2014/30/UE. EN 61326-1
- Directive ROHS 2011/65/UE

2. DIMENSIONS

Dimensions of the case
$96 \times 48 \times 119.4 \mathrm{~mm}$ (with terminals)

Mounting on panel

Cut out $43 \times 91.2 \mathrm{~mm}$

Protection

Front face: IP 65
Case: IP20
Terminals: IP 20

Housing:

Self-extinguishing case of black UL 94 V0 ABS. PC UL94 V0 front face. Mounting on panel with tightening by 4 screw pads.

Connectors removable terminal blocks on rear face for screwed connections (2.5mm², flexible or rigid)

Display: ± 10000 points (14 mm) Electroluminescent red and green (or red and white)
Alarm leds +2 leds with programmable functions

3. CONNECTINGS

Location of the terminals
(view of case rear side)

INPUTS

(A)

TEMPERATURE

RESISTANCE AND POTENTIOMETER

OUTPUTS

4. PROGRAMMING

4.1 Communication with the instrument

Several functions can be accessed from the measure display:

More functions can be accessed by pressing several keys simultaneously:

Direct access to the menu Adjust.

0 reset of the alarm recordings.

+ + M Visualisation of the direct measure.
Direct access to the menu setting of the alarm setpoints
Direct access to the menu TARE.

Reading convention:
__ Move through the main menu
\rightarrow Back to the previous menu
\Uparrow Alternating information display
The display blinks when a choice is possible, or during the setting of a value.

4.2 Orientation through the programming

The dialogue is ensured by 4 keys located on the front face.

Note: In mode programming, the instrument will automatically revert to the measure with the previous configuration, if no key is pressed during 1 min.

Entering of a parameter:

- For a signed value the entering begins with the choice of the sign (- or $0=+$). - For a value with decimals, the entering ends by the choice of the position of the decimal point, which can be moved by

If code correct,
access to the
programming
menu (see p9)

Move through the menus:

4.4 Programming menu (depending on options)

| Access to the programming of the input | p9 |
| :--- | :--- | :--- | Access to the programming of the display factor

4.4.1 Programming of the input

a. Process signals (DGN175 U and M)

Mode setpoint

Mode window

ON: coil supplied OFF: coil not supplied

Setting of the hysteresis

HY5t
The hysteresis is activated on switching from led on to led off, that is to say on switching off alarm, since the led represents the alarm status.

Mode setpoint

Led off

Mode window:

Led off

Time delay on the alarm

dELA4

Setting of the time lapse from 0 to 999.9 sec .
dOUbL: time delay on the alarm triggering and switch off SIMPL: time delay on the alarm triggering only

Choice of the led status

ALLEd

Choice of the status of the LED associated with the relay when the relay coil is supplied.

Recording of the alarm

 MEกロAllows recording the alarm after a setpoint has been passed. When the measure comes back below the alarm setpoint, the relay remains on and the led blinks to warn the user that the setpoint has been passed (for the reset to 0 of the alarm recordings see the menu CLr.AL in the direct functions).

Note: An exit from the mode programming with saving of the configuration will reset the alarm recordings to 0 .

Display of alarm messages

ME55

A programmed alarm message can be made to appear alternating with the measure.
The message will appear only during the alarm, that is to say while the associated led is on.

Setting of the alarm setpoints

There are 2 ways to adjust setpoints:

- Either in mode programming entering the correct access code.
- Or by pressing simultaneously
 andif the access to a quick programming has been authorized on the programming of the code (see p19)

4.4.6 Programming of the RS485 output (option)

Communication parameters

See the features of the digital data link p26
See the menus tOr or SECU

dEtEC.: In $m V$ or temperature input, the sensor break detection can be disabled in order not to disturb some calibrators swhich may be sensitive to the sensor break detection current.

To the menu Pr.DIS

YES: Exit and save the configuration
nO: Exit without saving the configuration
Note: An exit with saving of the configuration will
automatically reset to 0 the la tare, the min. and the max. as well as the alarm recordings.

4.5 Menu programming of the code

Simulation of the input, the display or the analogue output (if option).

Access to the information about the product.

5. DIRECT FUNCTIONS

5.1 reset to 0 Min. / Max. values

Access by the menu FUnCt or by pressing \square during the measure display.

Back to the measure.

5.2 Display of the input direct measure

Access by the menu FUnCt or by pressing simultaneously
 M during the measure display.

Display of the input measure.

Back to the measure
Press M

5.30 reset of the alarm recordings

FUnEL.
Access by the menu FUnCt or by pressing simultaneously - $+\mathbf{M}$ M durin during the measure display.

Back to the measure.

5.4 Quick programming of the alarm setpoints
 Access by the menu FUnCt or by pressing simultaneously $\mathbf{~}+\mathbf{M}$ during the measure display.

5.5 Menu adjustment (display calibration).

 during the measure display.

Case of a process, resistance or potentiometer input:

The instrument will re-adjust its scale factor and its display factor in order to obtain the desired result.

Case of a temperature input:

Eg. 1: If 1 setting only is performed, this will correspond to setting an offset, which means all the points will be shifted by the same quantity ($+000.3^{\circ}$ in this example).
Eg. 2: If the 2 settings are performed, the slope and the offset will be corrected in order to obtain the desired result.
In the example for 0.5° the performed correction will be of -0.5°, and for 501.8° a correction of -1.8° will be performed.

5.6 Menu Tare

Access by the menu FUnCt or by pressing simultaneously \quad during the measure display.

Back to the measure.

5.7 Setting of the brightness of the displays

Back to the measure
Press \mathbf{M}

6. ERROR MESSAGES

Measure in overrange.

Upper or lower electrical overstepping of the input.

पРЕП
Sensor broken.

Err 1 Value set out of range.

ㅁㄴ
Displayable value overload.

Self-diagnosis error

Coding:

Err. 1: Programming error (programming parameters incoherent).
Err. 4: Error on internal offset (excessive drift).
Err. 8: Calibration error
Err. 32: Error on the CJC (excessive drift).
Err. 64: Upper or lower electrical overstepping of the input.
If the instrument detects for example an offset error (4) and a programming error (1) the value of the error code will be $5(4+1)$

7. GENERAL WARRANTY TERMS

WARRANTY APPLYING AND DURATION:

This appliance is guaranteed for 1 year for any design or manufacturing defects, under normal operating conditions.
Conditions for processing *:
Processing not under warranty will be submitted to the acceptance of a repair estimate.
The customer will return the products at his charge, and they will be restored to him after processing.
Without a written agreement on the repair estimate within 30 days, the products will not be kept.

* Complete warranty terms and details available on request.

8. ANNEXE: MODBUS

8.1 Table of the Modbus addresses

Word address	Description
0	Sensor primary measure.
1	Decimal point/unit.
2	Final measure.
3	Decimal point/unit
4	Final measure min.
5	Decimal point/unit
6	Final measure max.
7	Decimal point/unit
8	Value of the analogue output.
9	Decimal point/unit
12	Auto diag 1
13	Auto diag 2
14	Status of the relay 1.
15	Status of the relay 2.
16	Status of the relay 3.
17	Status of the relay 4.

Measures

The following parameters: sensor primary measure, final measure, min. and max. of the final measure and the values of the analogue outputs are transmitted in the form of a module and a unit associated with a position of the decimal point.
Eg.:

Word address	Decimal value	Coding
0	10094	module
1	12289	point / unit

Coding of the integer decimal point / unit

\section*{| H | L |
| :---: | :---: |
| BYTE | BYTE |}

Dec.point unit: code of correspondance in the list hereunder

Value of the quartet:
0: no decimal
16: 1 decimal
32: 2 decimals
48: 3 decimals

nombre de décimales

Unité (octet L)
0 : aucune
1 : V
2 : kV
etc ...

Eg.: $12289=48 \times 256+1$
The integer encodes the unit V with 3 decimals
Hence the measure read is 10.094 V

Table of the units

code	Unit
000	
0001	V
002	KV
003	A
004	KA
005	W
006	KW
007	MW
008	GW
009	VAr
010	KVAR
011	MVAR
012	GVAR
013	VA
004	KVA
015	MVA
006	GVA
0017	Wh
018	KWh
019	MWh
020	GWh
021	VARh
022	KVARh

Cod		Unit
02		MVARh
02		GVARh
02		Hz
02		Khz
02		Deg
02		Kohms
03		h
		mn
03		\%
03		$\cos \mathrm{PHI}$
03		to 099 free

Code	Unit
100	${ }^{\circ} \mathrm{C}$
101	${ }^{\circ} \mathrm{F}$
102	\%
103	mm
104	cm
105	m
106	km
107	mBar
108	Bar
109	Pa
110	Kpa
111	$\mathrm{Kg} / \mathrm{cm} 2$
112	PSI
113	mCE
114	1/s
115	$1 / \mathrm{mn}$
116	I/h
117	m3/s
118	$\mathrm{m} 3 / \mathrm{mn}$
119	m3/h
120	tr/s
121	rad/s

Code	Unit
122	$\mathrm{~mm} / \mathrm{s}$
123	$\mathrm{~m} / \mathrm{s}$
124	$\mathrm{~m} / \mathrm{s}$
125	$\mathrm{~m} / \mathrm{mn}$
126	$\mathrm{~m} / \mathrm{h}$
127	mm 3
128	mm 3
129	m 3
130	g
131	kg
132	t
133	l
134	hl
135	Rpm
136	$\mathrm{CP} / \mathrm{mn}$
137	PH
138	mVAC
139	VAC
140	KV AC
141	mAAC
142	AAC
143	KAAC

Code	Unit
144	mV DC
145	V DC
146	KV DC
147	mA DC
148	ADC
149	KADC
150	Ohms
151	Kohms
152	Mohms
153	US.gal/s
154	US.galmin
155	US.gal/h
156	US.gal
157	Ib
158	C
159	imp
160	CP
161	mA
162	A
163	mA.h
164	A.h
165	HV
166	mV

Integer autodiag n° : (address 12)

| | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | | | (9) | (8) |

(5) CJC error
(0) Programming error
(6) Measure overrange of 10% of the caliber
(1) Offset error
(8) Sensor break
(2) Calibration error
(9) Measure overload
(eg.: measure of 15 V on caliber 10 V)
Integer autodiag $n^{\circ} 2$: (address 13)

Integer status relays 1 to 4: (address 14 to 17)

8.2 Correspondance with the DGN75

$\begin{array}{|c|c:c|}\hline \text { Address } & \text { Format } & \mathrm{Nr} \text { of words } \\$\cline { 1 - 1 } \& $\left.\begin{array}{l}\text { Value of the analogue output } \\ \text { in } \mu \mathrm{A} \text { (mA output) } \\ \text { in mV (10V output) }\end{array} & \text { double integer }\end{array}\right]$

- Direct measure:

Value without scale factor for the inputs $100 \mathrm{mV}, 1 \mathrm{~V}, 10 \mathrm{~V}, 300 \mathrm{~V}, 20 \mathrm{~mA}$:

- in mV for the input 10 V
- in $1 / 10^{\text {th }}$ of $m V$ for the input $1 V$
- in $\mu \mathrm{A}$ for the input mA
- in $1 / 100^{\text {th }}$ of mV for the input mV
- in $1 / 100^{\text {th }}$ of V for the input 300 V

Value of the resistance in $1 / 100^{\text {th }} \Omega$ for NI100 and Pt100.
Value of the temperature of the hot sensor in $1 / 10^{\text {th }}$ of degree for $\Delta \mathrm{Pt} 100$.
Value of the resistance

- in $1 / 100^{\text {th }} \Omega$ for the resistance input 0-400
- in $1 / 10^{\text {th }} \Omega$ for the resistance input $0-10 \mathrm{k} \Omega$

Value in $\mu \mathrm{V}$ for the thermocouple input.
Value in $1 / 100^{\text {th }}$ of $\%$ for the potentiometer input

- Status of the relays:

- Displayed measure:

The value of the displayed measure is taken up without the decimal point. To read the value of the decimal point, read the word at the address 120.

Position of the decimal point from 1 to 4 (version 10000 points) from 0 to 4 (version 100000 points)
0 : Display with 4 decimals (version 100000 points)
1 : Display with 3 decimals
2 : Display with 2 decimals
3 : Display with 1 decimal
4 : Display with 0 decimals

8.3 Description of the born Modbus functions

Reading of \mathbf{N} words: Function $\mathbf{n}^{\circ} 3$

Request sequence:

Slave number	Function 3 or 4	$1^{\text {st }}$ word adress MSB LSB	Nmbr of words MSB \quad LSB	CRC 16
1 byte 1 byte $\longleftarrow 2$ bytes $\longrightarrow \longleftarrow 2$ bytes $\longrightarrow 2$ bytes				

Response sequence:

Slave number Function 3 or 4 Nmbr of bytes read $1^{\text {st }}$ word value MSB LSB $2^{\text {nd }}$ word value MSB LSB CRC 16

Writing of N words: Function $\mathrm{n}^{\circ} 16$

Request sequence:

Slave number	Function 16	1st word address	Nbr of words to enf.	Nbr of byte to be enf.	Value of the words to be enforced	CRC 16

Response sequence:

Slave number	Function 16	1st word address	Nbr of words to enf.	CRC 16
1 byte 1 byte 1 byte $\quad 2$ bytes 2 bytes				

Writing of 1word: Function $n^{\circ} 6$

Request sequence:

Slave number	Function 6	Address of the word	Value of the word to enfor.	CRC 16
2 byte	1 byte 2 bytes	2 bytes	2 bytes	

Response sequence:

Exception sequence:

Slave number	Function requested with $\mathrm{MSB}=1$	Error code	CRC 16
1 byte 1 byte 1 byte 2 bytes			

Values of the errror codes:
1: Unknown function code
2: Incorrect address
3: Incorrect data
9: Writing impossible

8.4 Reading in double integer format:

Example: Reading of the displayed measure
Request:

254	03	0	206	0	2	CRC 16

Slave
Number
:---
of n words

Response with a positive measure:

Value of the measure:

Sign: 0 positive 1 negative

Measure $=$ byte $3 \times 256^{3}+$ byte $4 \times 256^{2}+$ byte $1 \times 256+$ byte 2

$$
\begin{aligned}
& =0 \times 256^{3}+0 \times 256^{2}+19 \times 256+136 \\
& =5000
\end{aligned}
$$

Reading of the address $120=>$ decimal point = 2 => displayed measure: 50.00

$\underline{\text { Response with a negative measure: }}$

254	3	4	236	120	255	255	CRC 16
byte 1							

Value of the measure:

byte 3	byte 4	byte 1	byte 2
11111111	11111111	11101100	01111000

\downarrow Sign: 1 negative: reversing of the bits and plus 1.

	byte 3	byte 4	byte 1	byte 2
	Reversion 00000000	000000000	00010011	10000111

Measure $=-\left(\right.$ byte $3 \times 256^{3}+$ byte $4 \times 256^{2}+$ byte $1 \times 256+$ byte 2$)$

$$
\begin{aligned}
& =-\left(0 \times 256^{3}+0 \times 256^{2}+19 \times 256+136\right) \\
& =-5000
\end{aligned}
$$

Reading of the address $120=>$ decimal point $=2$
=> displayed measure -50.00

8.5 CRC16 calculation algorythm:

Note: $\oplus=$ exclusive or.
Note 2: POLY = A001 (hex).
Note 3:
The CRC 16 calculation applies to all bytes in the sequence (excluding CRC16).
Note 4:
Caution! In the CRC 16, the 1st sent byte is the LSB.
Example: Sequence 1-3-0-75-0-2 CRC16 = 180-29 (the values are decimal).

