# PI-K Programmable Isolating Resistance Transmitter. 

## Features.

〕 Field Programmable Input and Output Ranges.
] Bi-Polar Output Ranges.
] Input to Output Isolation 1.6 kV .
[ High Accuracy 0.1\%.
[ Universal AC/DC Power Supply.
[ Compact DIN Rail Mount Enclosure.
[ Available Standard or Special Calibration.


## Ordering Information.

PI-K-X Standard Calibration:

PI-K
 $\square$ $\square$

Input 0~1k $\Omega$; Output 4~20mA; High Voltage Power Supply.

Special Range Calibration.

Other PI- models include: PI-B Bridge / Straingauge; PI-D DC; mA, mV, V. PI-F Frequency; PI-K Resistance; PI-M Maths Computing; PI-N RTD Differential Pt100; PI-P Potentiometer; PI-R RTD Pt100; PI-S Relay Dual Setpoint; PI-T Thermocouple.

| INPUT RANGES |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Resistance $(\Omega)$ | IR | Resistance $(\Omega)$ | IR |  |  |  |
| $0 \sim 10 \Omega$ | 1 | $0 \sim 4.7 \mathrm{k} \Omega$ | 19 |  |  |  |
| $0 \sim 20 \Omega$ | 2 | $0 \sim 5 \mathrm{k} \Omega$ | 20 |  |  |  |
| $0 \sim 22 \Omega$ | 3 | $0 \sim 7.5 \mathrm{k} \Omega$ | 21 |  |  |  |
| $0 \sim 25 \Omega$ | 4 | $0 \sim 10 \mathrm{k} \Omega$ | 22 |  |  |  |
| $0 \sim 47 \Omega$ | 5 | $0 \sim 20 \mathrm{k} \Omega$ | 23 |  |  |  |
| $0 \sim 50 \Omega$ | 6 | $10 \sim 50 \Omega$ | 24 |  |  |  |
| $0 \sim 75 \Omega$ | 7 | $25 \sim 75 \Omega$ | 25 |  |  |  |
| $0 \sim 100 \Omega$ | 8 | $50 \sim 100 \Omega$ | 26 |  |  |  |
| $0 \sim 200 \Omega$ | 9 | $75 \sim 225 \Omega$ | 27 |  |  |  |
| $0 \sim 220 \Omega$ | 10 | $150 \sim 250 \Omega$ | 28 |  |  |  |
| $0 \sim 250 \Omega$ | 11 | $250 \sim 500 \Omega$ | 29 |  |  |  |
| $0 \sim 470 \Omega$ | 12 | $500 \sim 1000 \Omega$ | 30 |  |  |  |
| $0 \sim 500 \Omega$ | 13 | $1 \sim 1.5 \mathrm{k} \Omega$ | 31 |  |  |  |
| $0 \sim 750 \Omega$ | 14 | $2 \sim 4 \mathrm{k} \Omega$ | 32 |  |  |  |
| $0 \sim 1 \mathrm{k} \Omega$ | 15 | $4 \sim 10 \mathrm{k} \Omega$ | 33 |  |  |  |
| $0 \sim 2 \mathrm{k} \Omega$ | 16 | $5 \sim 15 \mathrm{k} \Omega$ | 34 |  |  |  |
| $0 \sim 2.2 \mathrm{k} \Omega$ | 17 | $10 \sim 20 \mathrm{k} \Omega$ | 35 |  |  |  |
| $0 \sim 2.5 \mathrm{k} \Omega$ | 18 | $15 \sim 20 \mathrm{k} \Omega$ | 36 |  |  |  |
|  |  |  |  |  |  |  |
| Special Input $\operatorname{Range}$ | Z |  |  |  |  |  |


| OUTPUT RANGES |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Voltage | OR | Current | OR |  |  |  |
| $0 \sim 500 \mathrm{mV}$ | A | $0 \sim 1 \mathrm{~mA}$ | 1 |  |  |  |
| $0 \sim 1 \mathrm{~V}$ | B | $0 \sim 2 \mathrm{~mA}$ | 2 |  |  |  |
| $0 \sim 2 \mathrm{~V}$ | C | $0 \sim 5 \mathrm{~mA}$ | 3 |  |  |  |
| $0 \sim 3 \mathrm{~V}$ | D | $0 \sim 10 \mathrm{~mA}$ | 4 |  |  |  |
| $0 \sim 4 \mathrm{~V}$ | E | $0 \sim 16 \mathrm{~mA}$ | 5 |  |  |  |
| $0 \sim 5 \mathrm{~V}$ | F | $0 \sim 20 \mathrm{~mA}$ | 6 |  |  |  |
| $0 \sim 6 \mathrm{~V}$ | G | $1 \sim 5 \mathrm{~mA}$ | 7 |  |  |  |
| $0 \sim 8 \mathrm{~V}$ | H | $2 \sim 10 \mathrm{~mA}$ | 8 |  |  |  |
| $0 \sim 10 \mathrm{~V}$ | I | $4 \sim 20 \mathrm{~mA}$ | 9 |  |  |  |
| $0 \sim 12 \mathrm{~V}$ | J | $-1 \sim 1 \mathrm{~mA}$ | 10 |  |  |  |
| $1 \sim 5 \mathrm{~V}$ | K | $-2 \sim 2 \mathrm{~mA}$ | 11 |  |  |  |
| $2 \sim 10 \mathrm{~V}$ | L | $-5 \sim 5 \mathrm{~mA}$ | 12 |  |  |  |
| $-1 \sim 1 \mathrm{~V}$ | M | $-10 \sim 10 \mathrm{~mA}$ | 13 |  |  |  |
| $-2 \sim 2 \mathrm{~V}$ | N | $-20 \sim 20 \mathrm{~mA}$ | 14 |  |  |  |
| $-5 \sim 5 \mathrm{~V}$ | O |  |  |  |  |  |
| $-10 \sim 10 \mathrm{~V}$ | P |  |  |  |  |  |
| $-12 \sim 12 \mathrm{~V}$ | Q |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
| Special Output Range | Z |  |  |  |  |  |


| POWER SUPPLY | PS |
| :---: | :---: |
| High Voltage Power Supply: 85~264Vac/dc | H |
| Mid Voltage Power Supply: $22 \sim 85 \mathrm{Vac} / \mathrm{dc}$ | M |
| Low Voltage Power Supply: $10 \sim 28 \mathrm{Vac} / \mathrm{dc}$ | L |

Note: Power supply H is field selectable for M , and M for H . Power supply L must be ordered separately.

## Ordering Examples.

$\begin{array}{ll}\text { 1/ PI-K-8-1-L } & \text { 0~100 } \operatorname{Input;} \text { 0~1mA Output; Low Voltage Power Supply. } \\ \text { 2/ PI-K-Z-P-H-0/3K } & 0 \sim 3 \mathrm{k} \Omega \text { Input; -10~10V Output; High Voltage Power Supply }\end{array}$
2/ PI-K-Z-P-H-0/3K 0~3k Input; -10~10V Output; High Voltage Power Supply.

## Quality Assurance Programme.

The modern technology and strict procedures of the ISO9001 Quality Assurance Programme applied during design, development, production and final inspection grant long term reliability of the instrument.

PI-K Rev2 Specifications.

| Resistance Input | 3 Wire Resistance. |
| :---: | :---: |
|  | Lead Wire Resistance $=10 \Omega /$ Wire Max. |
|  | Field Programmable Zero From $5 \Omega$ to $20 \mathrm{k} \Omega$. |
|  | Field Programmable Span From $10 \Omega$ to $20 \mathrm{k} \Omega$. |
|  | Suitable for 2 Wire Connection. (Offset Calibration Needed.) |
| - Excitation | 0.8 mA for Input < $2 \mathrm{k} \Omega$. 0.08 mA for Input $>=2 \mathrm{k} \Omega$. |
| Output - Voltage | Field Programmable From 500 mVdc to $\pm 12 \mathrm{Vdc}$. |
|  | Maximum Output Drive $=10 \mathrm{~mA}$. |
| - Current | Field Programmable From 1mAdc to $\pm 20 \mathrm{mAdc}$. |
|  | Maximum Output Drive = 10Vdc. ( $500 \Omega$ @ 20mA.) |
| Power -H | 85~264Vac/dc; 50/60Hz; 5VA. |
| -M | 22~85Vac/dc; 50/60Hz; 5VA. |
| -L | 10~28Vac/dc; 50/60Hz; 5VA. |
| -Circuit Sensitivity |  |
| Accurate to | < $\pm 0.1 \%$ FSO Typical. |
| Linearity \& Repeatability | < $\pm 0.1 \%$ FSO Typical. |
| Ambient Drift | < $\pm 0.01 \% / C$ FSO Typical. |
| Noise Immunity | 125dB CMRR Average. (1600Vdc Limit.) |
| MC Compliances | Emissions EN 55022-A. Immunity EN 50082-1, <1\% Effect FSO Typical. |
| Safety Compliance | EN 60950 |
| Mains Isolation | 250 Vac . |
| Isolation Test Voltages | Mains to Input/Output 3kVac 50 Hz for 1 min ; Input to Output 1.6kVdc for 1 min . |
| Response Time | 200msec Typical. (10 to 90\% 50msec Typical.) |
| Operating Temperature \& Humidity | 0~60C. (Storage Temp. -20~80C.) 5~85\% RH Max. Non-Condensing. |
| Dimensions and Mounting | $\mathrm{L}=80, \mathrm{~W}=50, \mathrm{H}=120 \mathrm{~mm}$. Mounts on 35mm Symetrical Mounting Rail. |
| Product Liability. This information describes of a product for a particular application. Due to without notification. Regrettably, omissions and amendments to this specification. Technical d unless otherwise specified. Each product is | ur products. It does not constitute guaranteed properties and is not intended to affirm the suitability ngoing research and development, designs, specifications, and documentation are subject to change exceptions cannot be completely ruled out. No liability will be accepted for errors, omissions or a are always specified by their average values and are based on Standard Calibration Units at 25C, bject to the 'Conditions of Sale'. |
| Warning: These products are not designed an independant fail-safe back-up system | r use in, and should not be used for patient connected applications. In any critical installation ust always be implemented. |

Examples of Input Connection.


Terminations.

| Output | 1 | + Ve | Input 3 |
| :--- | :--- | :--- | ---: |
|  | 2 | $-V e$ | 4 |
|  | 7 | Neutral/+DC | 5 |
| P/S | 7 | Phase/-DC |  |

Plan View of PI-K Adjustments.

www.intech.co.nz

PI-K Input Programming.
Always set OUTPUT range first, then INPUT range.
If the input range is not listed in the programming table, use the following formulae to work out the Zero and Span DIP switch settings for gain.

Span Gain =
$600 \times$ Pregain
Resist High - Resist Low
Zero Gain =

$$
\frac{\text { Resist Low }}{5 \times \text { Pregain }}
$$

| Gain Value | 1 | 2 | 4 | 8 | 16 | 32 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DIP Switch No. | 1 | 2 | 3 | 4 | 5 | 6 |


| EFFECTIVE INPUT RANGE <br> (ie Resist High - Resist Low) | S5-1 | S5-2 | S5-3 | S5-4 | PREGAIN |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $10 \Omega<=$ Range $<200 \Omega$ | 0 | 0 | 1 | 1 | 1 |
| $200 \Omega<=$ Range $<2 \mathrm{k} \Omega$ | 0 | 0 | 0 | 0 | 10 |
| $2 \mathrm{k} \Omega<=$ Range $<=20 \mathrm{k} \Omega$ | 1 | 0 | 0 | 0 | 100 |

So if a gain value of 28 is required, put DIP switch no's $3,4,5$ OFF (ie, gains of $4+8+16=28$ ) and all the other DIP switches ON. DIP switches and Pots are accessed by removing the small rectangular lid on the top of the PI-K enclosure

Note: (a) Enter Ranges with their exponential value. Eg. Enter $2 \mathrm{k} \Omega$ as $2 \times 10^{3}$.
(b) Use the same pregain value in both the Span and Zero gain formulae.
(c) Enter the Zero or Span gain value into the appropriate Zero or Span DIP switch.

## PI-K Input Range Programming Table.

Notes:
1/ Switch status $1=\mathrm{ON}, 0=\mathrm{OFF}, \mathrm{X}=\mathrm{DON'T}$ CARE
2/ Input ranges with ' $*$ ' beside them require more adjustment by the Zero \& Span trimpot.

| Input Range Resist ( $\Omega$ ) | S3-Span |  |  |  |  |  | S4-Zero |  |  |  |  |  | S5-Function |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 2 | 3 | 4 | 5 | 6 | 1 | 2 | 3 | 4 | 5 | 6 | 1 | 2 | 3 | 4 |
| 0~10 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 |
| 0~20 ${ }^{\text {a }}$ | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 |
| 0~22, * | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 |
| 0~25 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 |
| 0~47 ${ }^{\text {* * }}$ | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 |
| 0~50 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 |
| 0~75 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 |
| 0~100 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 |
| 0~200 ${ }^{\text {a }}$ | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 |
| 0~220 ${ }^{\text {* }}$ | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 |
| 0~250 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 |
| 0~470 ${ }^{\text {* }}$ | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 |
| 0~500 $\sim$ | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 |
| 0~750 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 |
| 0~1k | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 |
| 0~2k $\Omega$ | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 |
| $0 \sim 2.2 \mathrm{k} \Omega$ * | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 |
| $0 \sim 2.5 \mathrm{k} \Omega$ | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 |
| $0 \sim 4.7 \mathrm{k} \Omega$ * | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 |
| $0 \sim 5 \mathrm{k} \Omega$ | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 |
| 0~7.5k $\Omega$ | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 |
| 0~10k $\Omega$ | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 |
| 0~20k $\Omega$ | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 |
| 10~50 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 |
| 25~75 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 1 |
| 50~100 $\Omega$ | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 |
| 75~225 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 |
| 150~250 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 |
| 250~500 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 |
| 500 $\sim^{\sim} 1000 \Omega$ | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 |
| 1~1.5k $\Omega$ | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 |
| 2k~4k | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 |
| 4k~10k | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 |
| 5k~15k | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 |
| 10k~20k | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 |
| 15k~20k | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 |



WARNING: High Voltages Maybe Present. Only adjust jumper with power disconnected.


| Power Supply Jumper Settings |  |
| :---: | :---: |
| H1 | Power Supply Voltage Range |
| H | Link for High: 85~264Vac/dc |
| M | Link for Mid: $22 \sim 85 \mathrm{Vac} / \mathrm{dc}$ |

## Notes:

$1 / \mathrm{H} 1$ is approx $4 \mathrm{~cm}\left(1 \frac{1}{2} \mathbf{"}^{\prime}\right)$ behind the ' S ' trimpot.
2 / Exceeding voltage ranges may damage the unit.
3/ Ensure the enclosure label is correctly labelled for the jumper position. 4/ Adjust H 1 jumper with a pair of needle nose pliers.
5/ Low Voltage Power Supply version is fixed, and has no jumper. This must be ordered separately.

## PI-K Output Range Programming Table.

## Notes: $1 / \quad$ Switch status $1=0 \mathrm{~N} \quad 0=$ OFF.

2/ Output ranges with '*' beside them reverse the polarity of the output connections.

| Output Range (V) | S1-SPAN |  |  |  |  |  | S2-Function |  |  |  | Output Range (I) | S1-SPAN |  |  |  |  |  | S2-Function |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 2 | 3 | 4 | 5 | 6 | 1 | 2 | 3 | 4 |  | 1 | 2 | 3 | 4 | 5 | 6 | 1 | 2 | 3 | 4 |
| 0~500mV | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0~1mA | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 |
| 0~1V | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0~2mA | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 |
| 0~2V | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0~5mA | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 |
| O-3V | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0~10mA | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 |
| 0~4V | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0~16mA | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 |
| 0-5V | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0-20mA | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 |
| 0~6V | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1-5mA | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 |
| 0~8V | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 2~10mA | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 |
| 0~10V | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 4~20mA | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 0 |
| 0~12V | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | -1~1mA | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 |
| 1~5V | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | -2~2mA | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 0 |
| 2~10V | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | -5~5mA | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 0 |
| -1~1V | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | -10~10mA | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 |
| -2~2V | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | -20-20mA | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 |
| -5~5V | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 0~-10mA * | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 |
| -10~10V | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 0--20mA * | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 |
| -12-12V | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 |  |  |  |  |  |  |  |  |  |  |  |
| 0--5V * | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 |  |  |  |  |  |  |  |  |  |  |  |
| 0~-10V * | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 1 |  |  |  |  |  |  |  |  |  |  |  |

## The Proper Installation \& Maintenance of PI-K.

Note. All power and signals must be de-energised before connecting any wiring, altering any jumpers or DIP switches, or inserting or removing the PI unit from it's base.
MOUNTING.
(1) Mount in a clean environment in an electrical cabinet on 35 mm Symmetrical mounting rail.
(2) Draft holes must have minimum free air space of 20 mm . Foreign matter must not enter or block draft holes.
(3) Do not subject to vibration or excess temperature or humidity variations.
(4) Avoid mounting in cabinets with power control equipment.
(5) To maintain compliance with the EMC Directives the PI-B is to be mounted in a fully enclosed steel cabinet. The cabinet must be properly earthed, with appropriate input / output entry points, filtering, and cabling.

## WIRING.

(1) A readily accessible disconnect device and a 1A, 250Vac overcurrent device, must be in the power supply wiring.
(2) All cables should be good quality overall screened INSTRUMENTATION CABLE with the screen earthed at one end only.
(3) Signal cables should be laid a minimum distance of 300 mm from any power cables.
(4) For 2 wire current loops, 2 wire voltage signals or 2 wire current signals, Austral Standard Cables B5102ES is recommended. For three wire transmitters, RTD's, and Resistance Sensors, Austral Standard Cables B5103ES is recommended.
(5) It is recommended that you do not ground current loops and use power supplies with ungrounded outputs.
(6) Lightning arrestors should be used when there is a danger from this source.
(7) Refer to diagrams for connection information.

## COMMISSIONING

(1) Once all the above conditions have been carried out and the wiring checked apply power to the PI-K loop and allow five minutes for it to stabilize.
(2) Due to differences in cable resistance in the resistance sensor legs or errors within the resistance sensor itself a small error may occur (usually less than 1\%). To remove this error take a low (approx 10\%) and a high (approx 90\%) reading of the variable being measured by the transducer supplying the signal to the PI-K, and ensure that this agrees with the level being indicated by the PLC or indicator, etc. that the PI-K is connected into. Adjust for any difference using the Zero and Span Pots in the top of the PI-K enclosure with a small screwdriver, until the two levels agree. (Clockwise to increase the output reading and anti-clockwise to decrease the output reading.)
MAINTENANCE.
(1) Repeat (2) of the commisioning instructions.
(2) Do it regularly - at least once every 12 months.

Intech instruments LTd
WWW.intech.co.nz
Christchurch Ph: +64 33430646 Auckland Ph: 098271930
Email: sales@intech.co.nz

